Genotoxicity analysis by presence of arsenic in soil: test tradescantia micronucleus extracts by clone 4430 (trad-mcn)

  • Miguel Angel Rico Rodríguez Academic Studies Center on Environmental Pollution, University of Queretaro.
  • Francisco prieto García Academic Area of Chemistry, Autonomous University of Hidalgo State.
  • Elena María Otazo Sánchez Academic Area of Chemistry, Autonomous University of Hidalgo State
  • Judith Prieto Méndez Institute of Agricultural Sciences, Autonomous University of Hidalgo State, Rancho Universitario.
  • Otilio Arturo Acevedo Sandoval 3Institute of Agricultural Sciences, Autonomous University of Hidalgo State, Rancho Universitario.
Palabras clave: Tradsescantia, micronúcleos, Zimapán, Querétaro.

Resumen

Arsenic is a toxic metalloid that is present in air, water and soil.  Soil bacteria play an important role in the oxidation of this element.  This article describes the use of plants as bioassay for the detection of genotoxicity induced leaching of soils with arsenic (As). Test micronuclei induction was used stem cells pollen Tradescantia clone 4430 (Trad-MCN). The results demonstrate that the micronuclei frequency was higher for soil leachate from the community of the Salitre, Hidalgo, and the community of Bella Vista del Río, Queretaro, in Mexico. Compared with the control group of leachates soil for the Municipality of Querétaro. In all cases there was a significant difference (Tukey p> 0,05). Also resulting in good linear correspondence R2 = 0,94 and the slope of the equation that represents a velocity induced MNs 100/0,05 tetrads each μgAs.L-1.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Miguel Angel Rico Rodríguez, Academic Studies Center on Environmental Pollution, University of Queretaro.
Ingeniero Químico Ambiental

Referencias

1 GHULAM-ABBAS, B.M., IRSHAD-BIBI, M.S., NABEEL-KHAN-NIAZI-ID, M.I.K., MUHAMMAD-AMJAD, M.H. and NATASHA-MAGALHAES, M.C.F. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. International Journal of Environmental Research. Public Health, 15(59), 2018, p. 1-45, doi:10.3390/ijerph15010059.

2 PARAMITA, M. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3, 2017, p. 17-22, doi:10.1016/j.emcon.2017.01.0042405-650/.

3 SEO, M.N., LEE, S.G. and EOM, S.Y. Estimation of total and inorganic arsenic intake from the diet in Korean adults. Archives of Environmental Contamination and Toxicology, 70, 2016, p. 647–656.

4 XUESONG, X.I., LU, L., CHARALAMBOS, P. and PEI, X. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics. Water, 10(96), 2018, p. 1-15, doi:10.3390/w10020096.

5 BAE, H.S., KANG, I.G., LEE, S.G., EOM, S.Y., KIM, Y.D., OH, S.Y., KWON, H.J., PARK, K.S., KIM, H., CHOI, B.S., YU, I.J. and PARK, J.D. Arsenic exposure and seafood intake in Korean adults. Human and Experimental Toxicology, 36(5), 2017, p. 451–460.

6 BAIG, S.A., SHENG, T., HU, Y., XU, J. and XU, X. Arsenic removal from natural water using low cost granulated adsorbents: A review. CLEAN Soil Air Water, 43, 2015, p. 13–26.

7 GORBOV, S.N., BEZUGLOVA, O.S., VARDUNI, T.V., GOROVTSOV, A.V., TAGIVERDIEV, S.S. and HILDEBRANT, Y.A. Genotoxicity and Contamination of Natural and Anthropogenically Transformed Soils of the City of RostovonDon with Heavy Metals. Eurasian Soil Science, 48(12), 2015, p. 1383–1392.

8 HABUDA-STANI, M., NUJIC, M., ROMIC, Ž., LONCARIC, A., RAVANCIC, M.E. and KRALJ, E. Arsenic preoxidation and its removal from groundwater using iron coagulants. Desalinization Water Treatment, 56, 2015, p. 2105–2113.

9 ABEJÓN, A., GAREA, A. and IRABIEN, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Separation and Purification Technology, 144, 2015, p. 46–53.

10 TE-HSIU, M.A., XU, Z., XU, C., MCCONNELL, H., RABAGO, E.V., ARREOLA, G.A. and ZHANG, H. The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation research, 334(2), 1995, p. 185-95.

11 MELO-DE-CARVALHO, R., LAÍS -COUTO-MACHADO, J., SOUSA DE AGUIAR, R.P., OLIVEIRA-FERREIRA DA-MATA, A.M., RODRIGUES-SILVA, R., SILVA-TEIXEIRA, J., OLIVEIRA-BARROS-DE-ALENCAR, M.V., TOREQUL-ISLAM, M. and DE CARVALHO-MELO-CAVALCANTE, A.A. Tradescantia pallida as a biomonitoring tool to assess the influence of vehicle exhaustion and benzene derivatives

AfrIcan Journal of Biotechnology, 16(6), 2017, p. 280-287, doi: 10.5897/AJB2017.15897.

12 SANTOS, A.P.M., SEGURA-MUÑOZ, S.I., NADAL, M., SCHUHMACHER, M. and DOMINGO J.L. Traffic-related air pollution biomonitoring with Tradescantia pallida (rose) Hunt. cv. purpurea Boom in Brazil. Environmental Monitoring and Assessment, 187(2), 39, 2015, p. 1-10.

13 LIMA, A.V.A., BARBOSA, M.A.S., CUNHA, L.C.S., DE MORAIS, S.A.L., DE AQUINO, F.J.T., CHANG, R. and DO NASCIMENTO, E.A. Volatile Compounds Obtained by the Hydrodistillation of Sugarcane Vinasse, a Residue from Ethanol Production. Revista Virtual de Química, 2017, 9(2), p. 764-773, doi: 10.21577/1984-6835.20170047.

14 SANTOS, A.P., SEGURA-MUÑOZ, S.I., NADAL, M., SCHUHMACHER, M., DOMINGO, J.L., MARTINEZ, C.A. and MAGOSSO-TAKAYANAGUI, A.M. Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environmental Monitoring and Assessment, 187, 2015, p. 1-10.

15 BETÂNIA-BRIZOLA-CASSANEGO, M., MARQUES-DA-COSTA, G., HISAYUKI-SASAMORI, M., ENDRES-JÚNIOR, D., TAMIRES-PETRY, C. and DROSTE, A. The Tradescantia pallida var. purpurea active bioassay for water monitoring: evaluating and comparing methodological conditions. Revista Ambiente y Agua, 9(3), 2014, p. 424-433, doi: 10.4136/ambi-agua.1411.

16 OLLER-CRUZ, O.J. Empleo de bioindicadores para determinar la calidad del aire en la ciudad de Tarija en puntos de muestreo de red MoniCA. Acta Nova, 8(3), 2018, p. 307–321.

17 PO-WEN, C., ZHEN-SHU, L., MIN-JIE, W. and TAI-CHEN, K. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration. International Journal of Environmental Research and Public Health, 13(11), 2016, p. 1078, https://doi.org/10.3390/ijerph13111078.

18 MISIK, M., MA, T.H., NERSESYAN, A., MONARCA, S., KIM, J.K. and KNASMUELLER, S. Micronucleus assays with Tradescantia pollen tetrads: an update. Mutagenesis, 26(1), 2011, p. 215–221.

19 MÉXICO. NOM-127-SSA1-1994. Norma Oficial Mexicana Salud ambiental, agua para uso y consumo humano- Límites permisibles de calidad y tratamiento a que debe someterse para su potabilización. México D.F. (México): Diario Oficial de la Federación, 1996.

20 BAKARE, A.A., ALIMBA, C.G. and ALABI, O.A. Genotoxicity and mutagenicity of solid waste leachates: A review. African Journal of Biotechnology, 12(27), 2013, p. 4206-4220.

21 CURADO, A.L., CUNHA DE OLIVEIRA, C., COSTA, W.R., BORELLA-MARFIL-ANHÊ, A.C. and MILLA- DOS SANTOS-SENHUK, A.P. Urban influence on the water quality of the Uberaba River basin: an ecotoxicological assessment. Revista Ambiente y Agua, 13(1), 2018, p. 1-10.

22 CARTER, L.J., HARRIS, E., WILLIAMS, M., RYAN, J.J., KOOKANA, R.S. and BOXALL, A.L. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems. Journal of Agricultural and Food Chemistry, 62(4), 2014, p. 816–825, doi: 10.1021/jf404282y.

23 DHYEVRE, A., FOLT ETE, A.S., ARAN, D., MULLER, S. and COTELLE, S. Effects of soil pH on the Vicia-micronucleus genotoxicity assay. Mutation Research- Genetic Toxicology and Environmental Mutagenesis, 774, 2014, p. 17-21.

24 BOULDING, J.R. Description and sampling of contaminated soils. A field guide. 2 ed. eBook ISBN 9781351456142. Boca Raton (USA): FL7 Lewis Publishers, 2017, p. 12-16. file:///C:/Users/Administrador/Documents/Downloads/9781351456142_preview.pdf

25 MEDINA-GUERRERO, M.L. y ZANOR, G.A. Evaluación de la contaminación por elementos traza en suelos agrícolas de municipio de Irapuato (Guanajuato). Jóvenes en la Ciencia, 3(1), 2017, p. 295-299.

26 PRIETO, G.F., LECHUGA, V.M.A., MÉNDEZ, M.M.A., BARRADO, E.E.Y. y OYARZÚN, G.J. Daños tóxicos en tejidos vegetales, producidos por aguas contaminadas con arsénico en Zimapán, Hidalgo México. Ciência e Tecnologia de Alimentos, 26(1), 2006, p. 94-97

27 CHAHAL, V., NAGPAL, A., PAKADE, Y.B. and KATNORIA, J.K. Ecotoxicological Studies of Soil Using Analytical and Biological Methods: A Review. International Journal of Biotechnology and Bioengineering, 8(3), 2014, p. 302-318.

28 MUNAWAR, I. Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere, 144, 2016, p. 785-802.

29 MENESTRINO-GARCIA, E., RODRIGUES-DA SILVA-JUNIOR, F.M. and MUCCILLO-BAISCH, A.L. Mutagenic effect of contaminated soil on the offspring of exposed rats. Acta Scientiarum, Health Sciences Maringá, 38(1), 2016, p. 19-22.

30 SABZAR, A.D., ABDUL-REHMAN, Y. and MASOOD-UL-HASSAN, B. An Introduction about Genotoxicology Methods as Tools for Monitoring Aquatic Ecosystem: Present Status and Future Perspectives. Fisheeries and Aquaculture Journal, 7, 158, 2016, p. 1-11, doi:10.4172/2150-3508.1000158.

31 RASHMI, K., SHELJA, S. and AVINASH, K.N. Comparative antigenotoxic effects of aqueous leaf extracts of different cultivars of Chrysanthemum morifolium R. against genotoxicity induced by mercuric chloride using Allium cepa L. root chromosomal aberration assay. Journal of Innovations in Pharmaceutical and Biological Sciences, 5(2), 2018, p. 87-92.

Cómo citar
Rico Rodríguez, M. A., prieto García, F., Otazo Sánchez, E. M., Prieto Méndez, J., & Acevedo Sandoval, O. A. (2019). Genotoxicity analysis by presence of arsenic in soil: test tradescantia micronucleus extracts by clone 4430 (trad-mcn). Biotecnología En El Sector Agropecuario Y Agroindustrial, 17(1), 56-63. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1204
Publicado
2019-01-01
Sección
Artículos de Investigaciòn