Hidrólisis enzimática en harina de quinua y tarwi por efecto de α-amilasa

  • Nancy Alejandra Navia Coarite Universidad Mayor de San Andrés.
  • Gaston Luis Nina Mollisaca Universidad Mayor de San Andrés.
  • Evelin Paty Mena Gallardo Universidad Mayor de San Andrés.
  • Lily Salcedo Ortiz Universidad Mayor de San Andrés.
Palabras clave: Chenopodium quinoa, Lupinus mutabilis, Carbohydrates, Kinetic parameters

Resumen

La quinua y el tarwi se caracterizan por ser altamente nutritivos, con el fin de aumentar su consumo se buscan nuevas alternativas de procesos alimentarios, artesanales y biotecnológicos. En este estudio se evaluó la digestibilidad de polisacáridos contenidos en harina de quinua real (Chenopodium quinoa Willd), variedad blanca (QB), negra (QN) y en oligosacáridos contenidos en harina de tarwi (Lupinus mutabilis) (T) por aplicación enzimática de α-amilasa in vitro. El análisis proximal de los granos (métodos AOAC), mostró valores similares a los de referencia. Se cuantifico el contenido de azucares libres en harina de los granos, encontrándose en %, 10,05 ± 0,3 para QB, 8,25 ± 0,3  para QN y 0,19 ± 0,01 para T. Se determinó el contenido de almidones, 51,08 ± 0,3% en QB y 49,04 ± 0,4% en QN. Los azucares reductores por efecto de Termamyl Sc en % de sustrato fue de 25 ± 1,9 (QB), 27,5 ± 1,5 (QN) y 2,01 ± 0,3 (T). Los parametros cineticos encontrados: Km: 80,4 mg/mL, Vmax 0,36 mg/mL min-1 (QB); Km: 98,8 mg/mL, Vmax 1,72 mg/mL min-1 (QN); T: Km: 3,14 mg/L y Vmax 4,81 mg/mL/min-1, se derivaron del grafico de Lineweaver Burk.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Nancy Alejandra Navia Coarite, Universidad Mayor de San Andrés.
Facultad de Ciencias Puras y Naturales, Instituto de Investigaciones Químicas, Laboratorio de BIOORGÁNICA. Lic. en Ciencias Químicas.
Gaston Luis Nina Mollisaca, Universidad Mayor de San Andrés.
Facultad de Ciencias Puras y Naturales, Instituto de Investigaciones Químicas, Laboratorio de BIOORGÁNICA. Lic. en Ciencias Químicas.
Evelin Paty Mena Gallardo, Universidad Mayor de San Andrés.
Facultad de Ciencias Puras y Naturales, Instituto de Investigaciones Químicas, Laboratorio de BIOORGÁNICA. Est. de Ciencias Químicas.
Lily Salcedo Ortiz, Universidad Mayor de San Andrés.
Facultad de Ciencias Puras y Naturales, Instituto de Investigaciones Químicas, Laboratorio de BIOORGÁNICA. MSc. en Productos Naturales.

Referencias

VICENTE, J.J. El cultivo de Tarwi (Lupinus mutabilis Sweet) en el Estado Plurinacional de Bolivia. Revista Científica de Investigación INFO-INIAF, 1(7), 2016, p. 88-100.

GRAF, B.L., ROJAS-SILVA, P., ROJO, L.E., DELATORRE-HERRERA, J., BALDEON, M.E. and RASKIN, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.), Comprehensive Reviews in Food Science and Food Safety, 14, 2015, p. 431-445.

GRANADOS, O. La guerra por el grano de oro. Perú arrebata a Bolivia el liderato en la exportación y producción. El País [online]. 2016. https://elpais.com/economia/2016/03/31/actualidad/1459422139_795680.html (20 de septiembre 2017).

BONIFACIO, A., ARONI, G. y VILLCA, M. Catálogo etnobotánica de la Quinua Real. La Paz (Bolivia): Fundación PROINPA, 2012, 63 p.

REPO DE CARRASCO, R., y ENCINA, Z.C. Determinación de la capacidad antioxidante y compuestos fenólicos de cereales andinos: quinua (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) y kiwicha (Amaranthus caudatus). Revista Sociedad Química de Perú, 74(2), 2008, p. 85-99.

PASKO, P., BARTON, H., ZAGRODZKI, P., GORINSTEIN, S. and FOLTA, M. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115, 2009, p. 994-998.

DINI, I., TENORE, G.C. and DINI, A. Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT-Food Sience and Technology, 43, 2010, p. 447-451.

HWANG, T.L., WANG, C.C., KUO, Y.H., HUANG, H.C., WU, Y.C., KUO, L.M. and WU, Y.H. The hederagenin saponin smg-1 is a natural fmlp receptor inhibitor that suppresses human neutrophil activation. Biochemical Pharmacology, 80, 2010, p. 1190-1200.

WANG, X., LIU, R., ZHANG, W., ZHANG, X., LIAO, N., WANG, Z., LI, W., QIN, X. and HAI, C. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Molecular and Cellular Endocrinology, 376, 2013, p. 70-80.

ZEVALLOS, V.F., ELLIS, H.J., SULIGOJ, T., HERENCIA, L.I. and CICLITIRA, P.J. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in coeliac disease. The American Journal of Clinical Nutrition, 96, 2012, p. 337-344.

GAWLIK-DZIKI, U., ŚWIECA, M., SUŁKOWSKI, M., DZIKI, D., BARANIAK, B. and CZYŻ, J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food and Chemical Toxicology, 57, 2013, p. 154-160.

PASKO, P., BARTON, H., ZAGRODZKI, P., IZEWSKA, A., KROSNIAK, M., GAWLIK, M. and GORINSTEIN, S. Effect of Diet Supplemented with Quinoa Seeds on Oxidative Status in Plasma and Selected Tissues of High Fructose-Fed Rats. Plant Foods for Human Nutrition, 65, 2010a, p. 146-151.

PASKO, P., ZAGRODZKI, P., BARTON, H., CHLOPICKA, J. and GORINSTEIN, S. Effect of Quinoa Seeds (Chenopodium quinoa) in Diet on some Biochemical Parameters and Essential Elements in Blood of High Fructose-Fed Rats. Plant Foods for Human Nutrition, 65, 2010b, p. 333-338.

FUENTES, F. and PAREDES, X. The state of the world's quinoa, Chapter: Nutraceutical Perspectives of Quinoa: Biological Properties and Functional Applications. New Jersey (USA): Regional Office for Latin America and Caribbean at Food and Agriculture Organization (FAO), 2015, p. 286-299.

PULVENTO, C., RICCARDI, M., LAVINI, A., D’ANDRIA, R., IAFELICE, G. and MARCONI, E. Field trial evaluation of two chenopodium quinoa genotypes grown under rain-fed conditions in a typical mediterranean environment in south Italy. Journal of Agronomy and Crop Science, 96, 2010, p. 407-411.

GÜENES-VERA, N., ARCINIEGA-RUIZ, O. and DÁVILA-ORTIZ, G. Structural analysis of the Lupinus mutabilis seed, its flour, concentrate and isolate as well as their behavior when mixed with wheat flour. Lebensmittel-Wissenschaft & Technologie, 37, 2004, p. 283-290.

JONES, P.J. Clinical nutrition: 7. Functional foods—more than just nutrition. Canadian Medical Association Journal, 166(12), 2002, p. 1555-1563.

INSTITUTO BOLIVIANO DE NORMALIZACIÓN Y CALIDAD (IBNORCA). Norma boliviana. Correspondiente a la Norma Andina NA 0038. Granos andinos – Pseudo cereales – Clasificación y requisitos. La Paz (Bolivia): 2007, 9 p.

DUBOIS, M., GILLES, K.A., HAMILTON, J.K., ROBERS, P.A. and SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 1956, p. 350-356.

ÁVILA-NÚÑEZ, R., RIVAS-PÉREZ, B., HERNÁNDEZ-MOTZEZAK, R. y CHIRINOS, M. Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12, 2012, p. 129-135.

SOUTHGATE, D.A.T. Determination of Food Carbohydrates, Elsevier Applied Science, 2 ed. Nueva York (USA): 1991, p. 132-138.

MEGAZYME. Total starch, assay procedure (amyloglucosidase/amylase method). Maryland (USA). AOAC 996.11, AACC. Method 76-13.01, 2017, 24 p.

NIELSEN, K.R. Termamyl Scan -amylase preparated produced by Bacillus licheniformis expresing a gen encoding a modified a amylase from Bacillus estearothermofilus. In Enzyme regulatory Affairs NNAS. Bagsvaerd (Dinamarca): Novo nordisk, 1999, 59 p.

OFFICIAL METHODS OF ANALYSIS OF THE A.O.A.C. Association of Official Analytical Chemists. 20 ed. Maryland (USA): 2016, 56 p.

DINI, A., RADTRELLI, L., SATURININO, P. and SCHETTINO, O. A compositional study of Chenopodium quinoa Seeds. Nahrung, 36, 1992, p. 400-404.

US DEPARTAMENT OF AGRICULTURE, AGRICULTURAL RESEARCH SERVICE (USDA). National nutrient database for standar reference, release 26. Nutrient Data Laboratory home page. U.S. Departament of Agriculture Web site. [Online]. 2013. Disponible: http://www.ars.usda.gov/ba/bhnrc/ndl. [citado 18 de Febrero de 2017].

REPO-CARRASCO-VALENCIA, R. and ASTUHUAMAN-SERNA, L. Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber, and other functional components. Ciencia e Tecnologia de alimentos, 31(1), 2011, p. 225-230.

SCHNEEMAN, B.O. Physical and chemical properties, methods of analysis and physiological effect. Food Technology, 40, 1986, p. 104- 109.

ORTEGA-DAVID, E., RODRÍGUEZ, A., DAVID, A. y ZAMORA-BURBANO, A. Caracterización de semillas de lupino (Lupinus mutabilis) sembrado en los Andes de Colombia. Acta Agronómica, 59(1), 2010, p. 111-118.

GROSS, R., VON BAER, E., KOCH, F., MARQUARD, R., TRUGO, L. and WINK, M. Chemical composition of a new variety of the Andean lupin (Lupines mutabilis cv. Inti) whit low alkaloid content, Journal of Food Composition and Analysis, 1, 1988, p. 353-361.

TAPIA, M. El Tarwi lupino andino. Tarwi, tauri o chocho. Lupinus mutabilis sweet. 1 ed. Lima (Perú): Fondo Italo Peruano, 2015, 25 p.

SCHOENEBERGER, H., GROSS, R., CREMER, H.D. and ELMADFA, I. Composition and Protein Quality of Lupinus mutabilis. Journal of Nutrition, 112, 1982, p. 70–76.

SCHOENEBERGER, H., GROSS, R., CREMER, H.D. and ELMADFA, I. The protein quality of lupins (Lupinus mutabilis) alone and in combination with other protein sources, Plant Foods of Human Nutrition, 32(2), 1983, p. 133-143.

AHAMED, N.T., SINGHAL, R.S., KULKARNI, P.R. and MOHINDER, P. A lesser-known grain, Chenopodium quinoa: Review of the chemical composition of its edible parts. Food and Nutrition Bulletin, 19, 1998, p. 61–70.

VEGA-GALVEZ, A., MIRANDA, M., VERGARA, J., URIBE, E., PUENTE, L. and MARTINEZ, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review, Journal of the Science of Food and Agriculture, 90, 2010, p. 2541–2547.

ARZAPALO, D., HUAMÁN, K., QUISPE, M. y ESPINOZA, C. Extracción y caracterización del almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca Junín. Revista de la Sociedad Química del Perú, 81(1), 2015, p. 44-54.

OGUNBENGLE, H.N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International journal of food sciences and nutrition, 54(2), 2003, p. 153–158.

REPO-CARRASCO, R., ESPINOZA, C. and JACOBSEN, S.E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Reviews International, 19, 2003, p. 179–189.

GONZALES, J.A., ROLDAN, A., GALLARDO, M., ESCUDERO, T. and PRADO, F.E. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa ('quinoa'). Plant foods for human nutrition, 39, 1989, p. 331-337.

KONISHI, Y., HIRANO, S., TSUBOI, H. and WADA, M. Distribution of Minerals in Quinoa (Chenopodium quinoa Willd.) Seeds. Bioscience, Biotechnology and Biochemistry, 68, 2004, p. 231–234.

ITALIA. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA (FAO). Simposio Regional del chocho o tarwi (Lupinus mutabilis). Quito (Ecuador): 2016, 25 p.

ADEYANJU, M.M., AGBOOLA, F.K., OMFUVBE, B.O., OYEFUGA, O.H. and ADEBAWO, O.O. A termostable extracellular α-amylase from Bacillus licheniformis isolated from cassava steep wáter. Biotechnology Letteers, 6, 2007, p. 473-480.

UL-HAQ, I., MOHSIN-JAVED, M., UZMA, H. and ADNAN, F. Kinetics and thermodynamic studies of alpha amylase from Bacillus licheniformis mutant. Pakistan Journal of Botany, 42(5) 2010, p. 3507-3516.

RASIAH, I. and REHM, B. One-Step Production of Immobilized -Amylase in Recombinant Escherichia coli, ppl. Environmental Microbiology, 75(7), 2009, p. 2012–2016.

Cómo citar
Navia Coarite, N. A., Nina Mollisaca, G. L., Mena Gallardo, E. P., & Salcedo Ortiz, L. (2019). Hidrólisis enzimática en harina de quinua y tarwi por efecto de α-amilasa. Biotecnología En El Sector Agropecuario Y Agroindustrial, 17(1), 64-73. https://doi.org/10.18684/bsaa.v17n1.1205
Publicado
2019-01-01
Sección
Artículos de Investigaciòn