Efecto del suministro in vivo de Lactobacillus casei en la alimentación de Cavia porcellus

Palabras clave: Probiotico, Inocuidad alimentaria, Salud humana, Salud Animal

Resumen

El manejo sanitario de los sistemas de producción se realiza con la adición de antibióticos (APC) en el alimento; sin embargo, estas prácticas han incrementado los problemas de resistencia por parte de las bacterias patógenas. A partir de esto se evaluó el efecto del suministro de L. casei  en los parámetros productivos y región gastrointestinal de esta especie. La investigación se realizó en las instalaciones y laboratorios de la Universidad de Nariño y se determinaron parámetros zootécnicos, cuadro hemático, química sanguínea y análisis coprológico. De igual manera, se realizó histología e inmunohistóquimica del intestino delgado de los animales. Se encontró que el suministro de la bacteria mostró parámetros productivos similares a los obtenidos con los tratamientos testigos. Los resultados para química sanguínea y orina presentaron variaciones en cuanto a los datos de referencia, sin embargo, se debe tener en cuenta que los animales utilizados para la evaluación presentan diferencia en cuanto al manejo, dado que la mayoría de reportes se tienen en animales de laboratorio y pocos en sistemas de producción. Además, se observó disminución en la presencia de lesiones gastrointestinales de los animales con suministro de L. casei. Los resultados demostraron la viabilidad del suministro de L. casei en cuyes.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Pecuario

Lenguajes:

Español; Castellano

Referencias bibliográficas

[1] MUND, M.D., KHAN, U.H., TAHIR, U., MUSTAFA, B.E. and FAYYAZ, A. Antimicrobial drug residues in poultry products and implications on public health: A review. International Journal of Food Properties, 20(7), 2017, p. 1433-1446. doi:https://doi.org/10.1080/10942912.2016.1212874

[2] KOCH, B.J., HUNGATE, B.A. and PRICE, L.B. Food‐animal production and the spread of antibiotic resistance: the role of ecology. Frontiers in Ecology and the Environment, 15(6), 2017, p. 309-318. https://doi.org/10.1002/fee.1505

[3] NKUKWANA, T.T. Global poultry production: Current impact and future outlook on the South African poultry industry. South African Journal of Animal Science, 48(5), 2018, p. 869-884.
doi: 10.4314/sajas.v48i5.7

[4] ORTIZ-RIVERA, Y., SÁNCHEZ-VEGA, R., GUTIÉRREZ-MÉNDEZ, N., LEÓN-FÉLIX, J., ACOSTA-MUÑIZ, C. and SEPULVEDA, D.R. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. Journal of dairy science, 100(6), 2017, p. 4258-4268. doi: 10.3168/jds.2016-11534.

[5] CAMPANA, R., VAN HEMERT, S. and BAFFONE, W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogensinvasion. Gut pathogens, 9(1), 2017, p. 12. doi: 10.1186/s13099-017-0162-4.

[6] LEMME-DUMIT, J.M., POLTI, M.A., PERDIGON, G. and GALDEANO, C.M. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Beneficial microbes, 9(1), 2018, p. 153-164. doi: 10.3920/BM2016.0220.

[7] REN, X., ZHU, Y., GAMALLAT, Y., MA, S., CHIWALA, G., MEYIAH, A. and XIN, Y. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine. Biomedicine & Pharmacotherapy, 94, 2017, p. 468-473. doi: 10.1016/j.biopha.2017.07.123

[8] ÁVILES-ESQUIVEL, D., MARTÍNEZ, A., LANDI, V., ÁLVAREZ, L., STEMMER, A., GÓMEZ-URVIOLA, N. y DELGADO, J. Caracterización genética del cuy doméstico en América del Sur usando marcadores moleculares. Trópical and subtropical Agroecosystems, 21, 2018, p. 1-10.

[9] CAYCEDO-VALLEJO, A., ZAMORA-BURBANO, A., ECHEVERRY-POTOSI, S., ENRIQUEZ-CHAMORRO, R., ORTEGA-DAVID, E. y BURGOS-VELASCO, M. Producción de cuyes. 1 ed. Pasto (Colombia): Editorial Universidad de Nariño, 2011, 220 p.

[10] JURADO-GÁMEZ, H. and FAJARDO-ARGOTI, C. Determination of the probiotic in vitro effect of Lactobacillus gasseri on a Staphylococcus epidermidis strain. Biosalud, 16(2), 2017, p. 53-69. doi:http://dx.doi.org/10.17151/biosa.2017.16.2.6

[11] ASTAIZA-MARTÍNEZ, J., BENAVIDES-MELO, J., CHAVES-VELÁSQUEZ, C., ARCINIEGAS-RIVERA, A. y QUIROZ-MORAN, C.L. Estandarización de la técnica de necropsia en cuyes (Cavia porcellus) en la Universidad de Nariño. Revista Investigación Pecuaria, 2(2), 2014, p. 79-83.

[13] JUBB, KENNEDY and PALMER. Pathology of Domestic Animals. 6 ed. Washington (USA): Elsevier, Inc. 2016, 670 p.

[14] RODRÍGUEZ-BARONA, S., GIRALDO, G. y MONTES, L. Encapsulación de alimentos probióticos mediante liofilización en presencia de prebióticos. Información tecnológica, 27(6), 2016, p. 135-144.

[15] CODY, R. An introduction to SAS university edition. 1 ed. Chicago (USA): SAS Institute, 2018, 880 p.

[16] WASHINGTON, M.I. and VAN-HOOSIER, G. Capítulo 3. Clinical Biochemistry and Hematology. En: The Laboratory Rabbit, Guinea Pig, Hamster and Other Rodents. 1 ed. Boston (USA): Academic Press, 2012, p. 94-96.

[17] WANG, C., CUI, Y. and QU, X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of microbiology, 200(2), 2018, p. 195-201. doi: 10.1007/s00203-017-1446-2.

[18] YASUTOMI, E., HOSHI, N., ADACHI, S., OTSUKA, T., KONG, L., KU, Y. and OOI, M. Proton pump inhibitors increase the susceptibility of mice to oral infection with enteropathogenic bacteria. Digestive diseases and sciences, 63(4), 2018, p. 881-889. doi: 10.1007/s10620-017-4905-3.

[19] SUBRAMANIAM, R., THIRUMAL, V., CHISTOSERDOV, A., BAJPAI, R., BADER, J. and POPOVIC, M. High-density cultivation in the production of microbial products. Chemical and biochemical engineering quarterly, 32(4), 2018, p. 451-464. doi:https://doi.org/10.15255/CABEQ.2018.1394

[20] CROWLEY, E.J., KING, J.M., WILKINSON, T., WORGAN, H.J., HUSON, K.M., ROSE, M.T. and MCEWAN, N.R. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PloS one, 12(2), 2017, p. e0165779. doi:https://doi.org/10.1371/journal.pone.0165779

[21] ALIAGA, L., MONCAYO, R., RICO, E. y CAYCEDO, A. Producción de cuyes. 1 ed. Lima (Perú): UCSS, 2009, 760 p.

[22] DOMINGOS, I., VELLANO, I.H., MORAES, A.C., ALTARUGIO, R., FILHO, A., OKAMOTO, A.S. and TRENTO, G.D. Measurement of in vitro Inhibition by Lactobacillus spp. against Salmonella Heidelberg. International Journal of Poultry Science, 17, 2018, p. 184-188. doi: 10.3923/ijps.2018.184.188

[23] LIU, C., ZHU, Q., CHANG, J., YIN, Q., SONG, A., LI, Z. and LU, F. Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets. Archives of animal nutrition, 71(2), 2017, p. 120-133. doi: 10.1080/1745039X.2017.1283824

[24] GUEVARA, J. y CARCELÉN, F. Efecto de la suplementación de probióticos sobre los parámetros productivos de cuyes. Revista Peruana de Química e Ingeniería Química, 17(2), 2014, p. 71. Doi:http://dx.doi.org/10.15381/rivep.v30i2.16071

[25] SAES-LARA, M., ROBLES-SÁNCHEZ, C., RUÍZ-OJEDA, F., PLAZA-DÍAZ, J. and GIL, A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, Type 2 diabetes and non-alcoholic fatty liver disease: A Review of human clinical trials. International Journal of Molecular Science, 17, 2016, p. 928. doi: 10.3390/ijms17060928.

[26] ADHIKARI, P.A. and KIM, W.K. Overview of prebiotics and probiotics: focus on performance, gut health and immunity–a review. Annals of animal science, 17(4), 2017, p. 949-966. doi:https://doi.org/10.1515/aoas-2016-0092

[27] YUAN, L., CHANG, J., YIN, Q., LU, M., DI, Y., WANG, P. and LU, F. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition, 3(1), 2017, p. 19-24. doi:https://doi.org/10.1016/j.aninu.2016.11.003

[28] MAHFUZ, S.U., NAHAR, M.J., MO, C., GANFU, Z., ZHONGJUN, L. and HUI, S. Inclusion of probiotic on chicken performance and immunity: A review. International Journal of Poultry Science, 16, 2017, p. 328-35. doi: 10.3923/ijps.2017.328.335

[29] DOWARAH, R., VERMA, A.K. and AGARWAL, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Animal Nutrition, 3(1), 2017, p. 1-6. doi:https://doi.org/10.1016/j.aninu.2016.11.002

[30] CHEN, H.J., YANG, W.Y. and WANG, C.Y. The review on the function of intestinal flora and the regulatory effects of probiotics on the intestinal health of rabbits. Memorias 2nd International Conference on Biological Sciences and Technology (BST 2017). Atlantis (USA): University Atlantis, 2017 p. 34-42.

[31] RAMOS-OBANDO, L., GUEVARA-BURBANO, A.C. y VILLOTA-ARTEAGA, M.I. Evaluación de la producción de cuyes Cavia porcellus alimentados con pasto aubade Lolium sp. y forraje de abutilón Abutilon striatum. Revista investigación pecuaria, 2(1), 2015, p. 34-39.

[32] BALAGUER, C.M., CAPILLA, A.C., DELGADO, V.A. and MACÍAS, D.S. A comparison of the growth performance, carcass traits, and behavior of guinea pigs reared in wire cages and floor pens for meat production. Meat science, 152, 2019, p. 38-40. doi:https://doi.org/10.1016/j.meatsci.2019.02.012

[33] GAMBOA, R.G., BASURTO, R.I., SANTOYO, M.C., MADRIGAL, J.B., ÁLVAREZ, B.E. and AVILA, M.G. In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: A comparison based on polymerization degree. LWT, 92, 2018, p. 380-387. doi:https://doi.org/10.1016/j.lwt.2018.02.051

[34] SANTARMAKI, V., KOURKOUTAS, Y., ZOUMPOPOULOU, G., MAVROGONATOU, E., KIOURTZIDIS, M., CHORIANOPOULOS, N. and YPSILANTIS, P. Survival, intestinal mucosa adhesion, and immunomodulatory potential of Lactobacillus plantarum strains. Current microbiology, 74(9), 2017, p. 1061-1067. doi: 10.1007/s00284-017-1285-z

[35] SONG, Y.G. and LEE, S.H. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Archives of oral biology, 76, 2017, p. 1-6. doi: 10.1016/j.archoralbio.2016.12.014.

[36] MOKOENA, M.P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 2017, p. 1255. doi: 10.3390/molecules22081255

[37] ÖZOGUL, F. and HAMED, I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Critical reviews in food science and nutrition, 58(10), 2018, p. 1660-1670. doi:https://doi.org/10.1080/10408398.2016.1277972

[38] BUCKOVÁ, B., HURNÍKOVÁ, Z., LAUKOVÁ, A., REVAJOVÁ, V. and DVOROŽŇÁKOVÁ, E. The anti-parasitic effect of probiotic bacteria via limiting the fecundity of Trichinella spiralis female adults. Helminthologia, 55(2), 2018, p. 102-111. doi: 10.2478/helm-2018-0010

[39] BUSTIOS, C., VERGARA, V. y CHAUCA, L. Suplementación de β-caroteno en dietas balanceadas con exclusión de forraje en cuyes (Cavia porcellus) reproductoras hembras. Revista de Investigaciones Veterinarias del Perú, 29(3), 2018, p. 756-76 doi:http://dx.doi.org/10.15381/rivep.v29i3.147829
Cómo citar
Jurado Gamez, H., Zambrano Mora, E. ., & Chávez Velásquez, C. . (2020). Efecto del suministro in vivo de Lactobacillus casei en la alimentación de Cavia porcellus. Biotecnología En El Sector Agropecuario Y Agroindustrial, 18(2), 156–165. https://doi.org/10.18684/BSAA(18)156-165
Publicado
2020-06-26
Sección
Artículos de Investigaciòn
QR Code