Proceso de extrusión de harina de banano verde: Propiedades antioxidantes y estructurales
Resumen
Una de las alternativas viables para aprovechar el banano verde de rechazo que no cumple con los parámetros de calidad para ser exportado, consiste en transformarlo en harina, sin embargo,
es necesario evaluar los cambios en las propiedades fisicoquímicas, antioxidantes y estructurales porque estos resultados son insumos importantes para dar soporte a posibles aplicaciones de cada harina en diferentes productos alimenticios. El objetivo de este estudio fue evaluar el efecto del secado por aire caliente y el proceso de extrusión sobre las propiedades fisicoquímicas, estructurales y actividad antioxidante del banano verde de rechazo. Para ello, se determinó el pH, acidez titulable, actividad del agua, contenido de humedad, fenoles totales y la actividad antioxidante usando ABTS, DPPH y ORAC tanto de la pulpa, como de la harina obtenida mediante deshidratación con aire caliente (HBVD) y por extrusión (HBVE). En cuanto a la estructura, se determinaron HBVD y HBVE mediante espectroscopía FTIR y Raman. No se encontró diferencia significativa en los valores medios de pH y acidez entre la pulpa y las harinas de banano verde (HBVD y HBVE). Además, los resultados de ABTS, DPPH y ORAC fueron mayores para la pulpa, mientras la muestra HBVE tuvo mayor contenido de fenoles totales. Las harinas HBVD y HBVE presentaron valore similares de ORAC, aunque la HBVE tuvo mayores valores de ABTS y DPPH comparado con la HBVD. Adicionalmente, los espectros FTIR y Raman evidenciaron un cambio estructural en la muestra HBVE con respecto a la del tratamiento HBVD, debido principalmente a la temperatura y el esfuerzo cortante aplicado en el proceso de extrusión.
Descargas
Disciplinas:
AgroindustriaLenguajes:
SpanishReferencias bibliográficas
AHMED, Z.F.R.; TAHA, E.M.A.; ABDELKAREEM, N.A.A.; MOHAMED, W.M. Postharvest properties of unripe bananas and the potential of producing economic nutritious products. International Journal of Fruit Science, v. 20, sup 2, 2020, p. S995-S1014. https://doi.org/10.1080/15538362.2020.1774469
ALAM, M.; BISWAS, M.; HASAN, M. M.; HOSSAIN, M. F.; ZAHID, M. A.; AL-REZA, M. S.; ISLAM, T. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon, v. 9, n. 7, 2023, p. e18312. https://doi.org/10.1016/j.heliyon.2023.e18312
ALMEIDA, M.R.; ALVES, R.S.; NASCIMBEM, L.B.; STEPHANI, R.; POPPI, R.J.; DE OLIVEIRA, L.F. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Analytical and Bioanalytical Chemistry, v. 397, n. 7, 2010, p. 2693–2701. https://doi.org/10.1007/s00216-010-3566-2
ANYASI, T.A.; JIDEANI, A.I.O.; MCHAU, G.A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars. Food Science and Nutrition, v. 3, n. 3, 2015, p. 221–232. https://doi.org/10.1002/fsn3.208
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS-AOAC. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists. Gaithersburg, MD (USA): Methods 994.12, 925.10, 978.18, 943.02: 1997
BAAH, R.O.; DUODU, K.G.; EMMAMBUX, M.N. Cooking quality, nutritional and antioxidant properties of gluten-free maize – Orange-fleshed sweet potato pasta produced by extrusion. LWT-Food Science and Technology, v. 162, 2022, p. 113415.https://doi.org/10.1016/j.lwt.2022.113415
CAMPUZANO, A.; ROSELL, C.M.; CORNEJO, F. Physicochemical and nutritional characteristics of banana flour during ripening. Food Chemistry, v. 256, 2018, p. 11-17.https://doi.org/10.1016/j.foodchem.2018.02.113
CHANG, L.; YANG, M.; ZHAO, N.; XIE, F.; ZHENG, P.; SIMBO, J.; YU, X.; DU, S. K. Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). Food Bioscience, v. 47, 2022, p. 101624.https://doi.org/10.1016/j.fbio.2022.101624
CZEKUS, B.; PEĆINAR, I.; PETROVIĆ, I.; PAUNOVIĆ, N.; SAVIĆ, S.; JOVANOVIĆ, Z.; STIKIĆ, R. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca CVS. of quinoa seed microstructure and perisperm characterization. Journal of Cereal Science, v. 87, 2019, p. 25–30.https://doi.org/10.1016/j.jcs.2019.02.011
DE GELDER, J.; DE GUSSEM, K.; VANDENABEELE, P.; MOENS, L. Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, v. 38, n. 9, 2007, p. 1133–1147.https://doi.org/10.1002/jrs.1734
DE SOUZA, A.V.; DE MELLO, J.M.; DA SILVA FAVARO, V.F.; DOS SANTOS, T.G.F.; DOS SANTOS, G.P.; DE LUCCA SARTORI, D.; FERRARI PUTTI, F. Metabolism of bioactive compounds and antioxidant activity in bananas during ripening. Journal of Food Processing and Preservation, v. 45, n. 11, 2021, p. e15959.https://doi.org/10.1111/jfpp.15959
ERDMAN, J.; MACDONALD, I.; ZEISEL, S. Nutrición y dieta en la prevención de enfermedades. 10th ed. México D.F (México).: McGraw Hill Interamericana, 2014, p. 354-361, ISBN: 9786071510532.
FATEMEH, S.; SAIFULLAH, R.; ABBAS, F.; AZHAR, M. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: influence of variety and stage of ripeness. International Food Research Journal, v. 19, n. 3, 2012, p. 1041-1046. https://www.semanticscholar.org/paper/Total-phenolics%2C-flavonoids-and-antioxidant-of-pulp-Fatemeh-Saifullah/17d1732a9222466524cbac6d938d5971178d5c4e
FAUST, S.; FOERSTER, J.; LINDNER, M.; SCHMID, M. Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing. Polymer Engineering & Science, v. 62, n. 1, 2022, p. 95-102. https://doi.org/10.1002/pen.25836
FUENTES-ZARAGOZA, E.; RIQUELME-NAVARRETE, M.J.; SÁNCHEZ-ZAPATA, E.; PÉREZ-ÁLVAREZ, J.A. Resistant starch as functional ingredient: a review. Food Research International, v. 43, n. 4, 2010, p. 931–942. https://doi.org/10.1016/j.foodres.2010.02.004
GARRIDO-GALAND, S; ¨ASENSIO-GRAU, A; CALVO-LERMA, J; HEREDIA, A; ANDRÉS, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Research International, v. 145, 2021. https://doi.org/10.1016/j.foodres.2021.110398.
HAZRA, B.; BISWAS, S.; MANDAL, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine, v. 8, n. 63, 2008, p. 1-10.https://doi.org/10.1186/1472-6882-8-63
JARAMILLO-GARCÉS, Y.; SACCHET-PÉREZ, M.; MANJARRÉS-PINZÓN, G.; MANJARRÉS-PINZÓN, K.; CORREA-LONDOÑO, G.; RODRÍGUEZ-SANDOVAL, E. Effect of low-temperature storage time on rejected green banana for flour production. Revista Facultad Nacional de Agronomía Medellín, v. 76, n. 3, 2023, p. 10517-10526. https://doi.org/10.15446/rfnam.v76n3.105789
KHOOZANI, A.; BIRCH, J.; BEKHIT, A.E.D.A. Textural properties and characteristics of whole green banana flour produced by air-oven and freeze-drying processing. Journal of Food Measurement and Characterization, v. 14, n. 3, 2020, p. 1533–1542. https://doi.org/10.1007/s11694-020-00402-7
KNIESE, J.; RACE, A. M.; SCHMIDT, H. Classification of cereal flour species using Raman spectroscopy in combination with spectra quality control and multivariate statistical analysis. Journal of Cereal Science, v. 101, 2021, p. 103299. https://doi.org/ 10.1016/j.jcs.2021.103299
KIZIL, R.; IRUDAYARAJ, J.; SEETHARAMAN, K. Characterization of irradiated starches by using FT-raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, v. 50, n. 14, 2002, p. 3912–3918. https://doi.org/10.1021/jf011652p
ŁABANOWSKA, M.; KURDZIEL, M.; FILEK, M.; WALAS, S.; TOBIASZ, A.; WESEŁUCHA-BIRCZYŃSKA, A. The influence of the starch component on thermal radical generation in flours. Carbohydrate Polymers, v. 101, 2014, p. 846–856.https://doi.org/10.1016/j.carbpol.2013.10.005
LACERDA, L.D.; LEITE, D.C.; DA SILVEIRA, N.P. Relationships between enzymatic hydrolysis conditions and properties of rice porous starches. Journal of Cereal Science, v. 89, 2019, p. 102819.https://doi.org/10.1016/j.jcs.2019.102819
LOYPIMAI, P.; MOONGNGARM, A. Utilization of pregelatinized banana flour as a functional ingredient in instant porridge. Journal of Food Science and Technology, v. 52, 2015, p. 311-318.https://doi.org/10.1007/s13197-013-0970-6
LU, H.; YANG, Z.; YU, M.; JI, N.; DAI, L.; DONG, X.; XIONG, L.; SUN, Q. Characterization of complexes formed between debranched starch and fatty acids having different carbon chain lengths. International Journal of Biological Macromolecules, v. 167, 2021, p. 595-604. https://doi.org/10.1016/j.ijbiomac.2020.11.198
LU, H.; TIAN, Y.; MA, R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy. Food Hydrocolloids, v. 134, 2023, p. 108064.https://doi.org/10.1016/j.foodhyd.2022.108064
MAHDAD-BENZERDJEB, A.; TALEB-MOKHTARI, I.N.; SEKKAL-RAHAL, M. Normal coordinates analyses of disaccharides constituted by D-glucose, D-galactose and D-fructose units. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 68, n. 2, 2007, p. 284–299.https://doi.org/10.1016/j.saa.2006.11.032
MAHFUJUL ALAM, MRITYUNJOY BISWAS, MIR MEAHADI HASAN, MD FARUK HOSSAIN, MD ASHRAFUZZAMAN ZAHID, MD SAJIB AL-REZA, TARIKUL ISLAM. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon, v 9, n 7, 2023.https://doi.org/10.1016/j.heliyon.2023.e18312.
MARTA, H.; CAHYANA, Y.; SENIA, E.; DJALI, M.; HALIM, I.R.; URROHMAH, S.; KHAIRUNNISSA, D.S.; SUTARDI, A.A. Physicochemical and pasting properties of cross linked-banana flour. IOP Conference Series: Earth and Environmental Science, v. 292, n. 1, 2019, p. 012006. https://doi.org/10.1088/1755-1315/292/1/012006
MATEEN, A.; SINGH, G. Evaluating the potential of millets as blend components with soy protein isolate in a high moisture extrusion system for improved texture, structure, and colour properties of meat analogues. Food Research International, v. 173, 2023, p. 113395.https://doi.org/10.1016/j.foodres.2023.113395
MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. Cadena de banano [Ebook]. Bogotá (Colombia): 2020. 20 p. Retrieved 12 May 2022, from https://sioc.minagricultura.gov.co/Banano/Documentos/2020-12-31 Cifras Sectoriales.pdf
NAKAJIMA, S.; KUROKI, S.; IKEHATA, A. Selective detection of starch in banana fruit with Raman spectroscopy. Food Chemistry, v. 401, 2023, p. 134166.https://doi.org/10.1016/j.foodchem.2022.134166
ORSUWAN, A.; SOTHORNVIT, R. Effect of miniemulsion cross-linking and ultrasonication on properties of banana starch. International Journal of Food Science and Technology, v. 50, n. 2, 2015, p. 298–304. https://doi.org/10.1111/ijfs.12626
OU, B.; HAMPSCH-WOODILL, M.; PRIOR, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, v. 49, n. 10, 2001, p. 4619-4626.https://doi.org/10.1021/jf010586
PADHI, S.; DWIVEDI, M. Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of refractance window drying. Future Foods, v. 5, 2022, p. 100101. https://doi.org/10.1016/j.fufo.2021.100101
PICO, J.; XU, K.; GUO, M.; MOHAMEDSHAH, Z.; FERRUZZI, M.; MARTINEZ, M. Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chemistry, v. 297, 2019, p. 124990.https://doi.org/10.1016/j.foodchem.2019.124990
RODRÍGUEZ AGUIRRE, O.E.; ANDRADE BARREIRO, W.A.; DIAZ LÓPEZ, F.E. Actividad antioxidante de extractos de hojas de Bocconia frutescens L. (Papaveraceae). Revista de Tecnología (Archivo), v. 14, n. 2, 2015, p. 21-36.https://doi.org/10.18270/rt.v14i2.1868
ROLANDELLI, G.; GALLARDO-NAVARRO, Y.T.; GARCÍA PINILLA, S.; FARRONI, A.E.; GUTIÉRREZ-LÓPEZ, G.F.; BUERA, M.P. Components interactions and changes at molecular level in maize flour-based blends as affected by the extrusion process. A multi-analytical approach. Journal of Cereal Science, v. 99, 2021, p. 103186. https://doi.org/10.1016/j.jcs.2021.103186
SALAZAR, D.; ARANCIBIA, M.; LALALEO, D.; RODRÍGUEZ-MAECKER, R.; LÓPEZ-CABALLERO, M.; MONTERO, M.). Physico-chemical properties and filmogenic aptitude for edible packaging of Ecuadorian discard green banana flours (Musa acuminanta AAA). Food Hydrocolloids, v. 122, 2022, p. 107048.https://doi.org/10.1016/j.foodhyd.2021.107048
SARAWONG, C.; SCHOENLECHNER, R.; SEKIGUCHI, K.; BERGHOFER, E.; NG, P. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, v 143, 2014, p. 33-39.http://dx.doi.org/10.1016/j.foodchem.2013.07.081
SARTORI, T.; MENEGALLI, F.C. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocolloids, v. 55, 2016, p. 210–219.https://doi.org/10.1016/j.foodhyd.2015.11.018
SEGUNDO, C.; ROMÁN, L.; LOBO, M.; MARTINEZ, M.; GÓMEZ, M. Ripe banana flour as a source of antioxidants in layer and sponge cakes. Plant Foods for Human Nutrition, v. 72, n. 4, 2017, p. 365-371. https://doi.org/10.1007/s11130-017-0630-5
SHARMA, A.; GUPTA, P. Evaluation of antioxidant activity and validated method for analysis of polyphenols from non-edible parts of indian tropical fruits by using microwave assisted extraction and LC-MS / MS. International Journal of Pharma and Bio Sciences, v. 4, n. 1, 2013, p. 227–241.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb2224b313120251d0bbd93b1e03802b115fbacd
TRIPATHI, L.; TRIPATHI, J. N.; TENKOUANO, A.; BRAMEL, P. (2008). Banana and plantain. En Kole C.; Hall T. C. A Compendium of Transgenic Crop Plants: Tropical and Subtropical Fruits and Nuts, Cap 3., Hoboken, (USA): Wiley-Blackwell, 2008, 77-108 p. https://biblio.iita.org/documents/tripathi-banana-2008.pdf-77b025a37b0db699c260e7df13baa062.pdf
TORBICA, A.; PEĆINAR, I.; LEVIĆ, S.; BELOVIĆ, M.; JOVIČIĆ, M.; STEVANOVIĆ, Z. D.; NEDOVIĆ, V. Insight in changes in starch and proteins molecular structure of non-wheat cereal flours influenced by roasting and extrusion treatments. Food Hydrocolloids, v. 140, 2023, p. 108591.https://doi.org/10.1016/j.foodhyd.2023.108591
TUÁREZ-GARCÍA, D.A.; GALVÁN-GÁMEZ, H.; ERAZO SOLÓRZANO, C.Y.; ZAMBRANO, C.E.; RODRÍGUEZ-SOLANA, R.; PEREIRA-CARO, G.; SANCHEZ-PARRA, M.; MORENO-ROJAS, J.M.; ORDÓÑEZ-DÍAZ, J. L. Effects of different heating treatments on the antioxidant activity and phenolic compounds of Ecuadorian red dacca banana. Plants, v. 12, n. 15, 2023, p. 2780.https://doi.org/10.3390/plants12152780
VEGA-GÁLVEZ, A. DI SCALA, K.; RODRÍGUEZ, K.; LEMUS-MONDACA, R.; MIRANDA, M.; LÓPEZ, J.; PEREZ-WON, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, v. 117, 2009, p. 647–653.https://doi.org/10.1016/j.foodchem.2009.04.066
ZOU, F.; TAN, C.; ZHANG, B.; WU, W.; SHANG, N. The valorization of banana by-products: Nutritional composition, bioactivities, applications, and future development. Foods, v. 11, n. 20, 2022, p. 3170. https://doi.org/10.3390/foods11203170
Derechos de autor 2024 Universidad del Cauca

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Datos de los fondos
-
Sistema General de Regalías de Colombia
Números de la subvención BPIN 2020000100698 -
Universidad Nacional de Colombia
Números de la subvención 51045 -
Ministerio de Ciencia, Tecnología e Innovación
Números de la subvención CT 195-2023