Cambios en propiedades mecanicas durante la deshidratación osmotica de pitahaya amarilla

  • Alfredo Adolfo Ayala Aponte Universidad del Valle, ingeniería de alimentos.
  • Yury Leiton Ramirez Universidad del Valle, ingeniería de alimentos http://orcid.org/0000-0002-1804-7777
  • Liliana Serna Cock Universidad Nacional de Colombia Sede Palmira.
Palabras clave: Pulso de vacío, Esfuerzo de fractura, Deformación de fractura, Módulo de elasticidad

Resumen

Las frutas como la pitahaya amarilla presentan cambios en sus propiedades mecánicas durante la deshidratación osmótica (DO). El conocimiento de estas propiedades mecánicas es útil para el análisis de la calidad y/o estabilidad de los alimentos. Se evaluó la influencia del tiempo de deshidratación osmótica, el nivel de presión (presión atmosférica y pulso de vacío) y la concentración de sacarosa de la solución osmótica (SO) (45 y 65°Brix) sobre propiedades mecánicas de rodajas de pitahaya. El pulso de vacío fue de 5 kPa durante 5 min. Las muestras frescas y deshidratadas fueron sometidas a pruebas de compresión uniaxial hasta la ruptura; se evaluaron 3 parámetros mecánicos (esfuerzo de fractura, deformación de fractura y módulo de elasticidad). Los resultados mostraron que el esfuerzo de fractura y el módulo de elasticidad disminuyeron significativamente con el tiempo de DO y con la aplicación del pulso de vacío, mientras que se incrementaron con el aumento de concentración de sacarosa. La deformación de fractura se incrementó con el tiempo de DO y con el pulso de vacío. Estos resultados indican que la pitahaya amarilla retiene mayor firmeza con presión atmosférica y con 65°Brix respecto a los tratados con aplicación del pulso de vacío.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Agroindustria

Lenguajes:

es;en

Agencias de apoyo:

Ministerio de Agricultura, Desarrollo Rural de la República de Colombia, Asociación de Productores de Pitahaya (Asoppitaya).

Biografía del autor/a

Alfredo Adolfo Ayala Aponte, Universidad del Valle, ingeniería de alimentos.

Grupo de Investigación en Procesos Agroindustriales
(GIPA). Ph.D Ciencia y Tecnología de Alimentos. Cali, Colombia.

Yury Leiton Ramirez, Universidad del Valle, ingeniería de alimentos

Grupo de Investigación en Procesos Agroindustriales
(GIPAB). M.Sc ingeniería de alimentos. Cali, Colombia.

Liliana Serna Cock, Universidad Nacional de Colombia Sede Palmira.

Facultad de Ingeniería y Administración, Grupo
de investigación en bacterias acido lácticas y sus aplicaciones biotecnológicas industriales.Ph.DIngeniería de Alimentos. Palmira, Colombia.

Referencias bibliográficas

PERUSSELLO, C.A., KUMAR, C., DE CASTILHO, F. and KARIM, M.A. Heat and mass transfer modeling of the osmo-convective drying of yacon roots (Smallanthus sonchifolius). Applied Thermal Engineering, 63(1), 2014, p. 23-22.

CHANDRA, S. and KUMARI, D. Recent development in osmotic dehydration of fruit and vegetables: a review. Critical Reviews in Food Science and Nutrition, 55(4), 2015, p. 552-561.

CORREA, J., VIANA, A., MENDONÇA, K. and JUSTUS, A. Optimization of pulsed vacuum osmotic dehydration of sliced tomato. In J. M. P. Q. Delgado, & A. Gilson Barbosa de Lima (Eds.). Drying and energy Techonology, 63(4), 2016, p. 207-228.

GARCÍA, M., ALVIS, A. y GARCÍA, C. Evaluación de los Pre-tratamientos de Deshidratación Osmótica y Microondas en la Obtención de Hojuelas de Mango (Tommy Atkins). Información tecnológica, 26(5), 2015, p. 63-70.

PHISUT, N., RATTANAWEDEE, M. and AEKKASAK, K. Effect of osmotic dehydration process on the physical, chemical and sensory properties of osmo-dried cantaloupe. International Food Research Journal, 20(1), 2013, p. 189-196.

AHMED, I., QAZI, I. and JAMAL, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 2016, p. 29–43.

DE OLIVEIRA, L., CORREA, J., PEREIRA, M., RAMOS, A. and VILELA, M. Osmotic dehydration of yacon (Smallanthus sonchifolius): Optimization for fructan retention. LWT - Food Science and Technology, 71, 2016, p. 77-87.

CORRÊA, J., ERNESTO, D. and MENDONÇA, K. Pulsed vacuum osmotic dehydration of tomatoes: Sodium incorporation reduction and kinetics modeling. LWT - Food Science and Technology. 71, 2016, p. 17–24.

NIETO, A.B., VICENTE, S., HODARA, K., CASTRO, M.A. and ALZAMORA, S.M. Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. Journal of Food Engineering, 119(1), 2013, p. 104–114.

CHIRALT, A., MARTINEZ-NAVARRETE, N., MARTINEZ- MONZO, J., TALENS, P., MORAGA, G., AYALA, A. and FITO, P. Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. Journal of Food Engineering, 49(2-3), 2001, p. 129–135.

SHIRVANI, M., GHANBARIAN, D. and GHASEMI, M. Measurement and evaluation of the apparent modulus of elasticity of apple based on Hooke’s, Hertz’s and Boussinesq’s theories. Measurement (UK), 54(1), 2014, p. 133-139.

MAYOR, L., CUNHA, R.L. and SERENO, A.M. Relation between mechanical properties and structural changes during osmotic dehydration of pumpkin, Food Research International, 40(4), 2007, p. 448-460.

RIBEIRO, A., AGUIAR-OLIVEIRA, E. and MALDONADO, R.R. Optimization of osmotic dehydration of pear followed by conventional drying and their sensorial quality. LWT – Food Science and Technology, 72, 2016, p. 407–415.

LUPU, M., PĂDUREANU, V. and CANJA, C. The influence of speed compression on the maize grinding process. Forestry, Wood Industry, Agricultural Food Engineering, 8(1), 2015, p. 71-74.

TORRES, L., AYALA, A. and SERNA, L. Viscoelastic behavior of yellow pitahaya treated with 1-MCP. Dyna, 83(196), 2016, p. 119-123.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS (ICONTEC). NTC 3554, in Frutas frescas: Pitahaya. Bogotá (Colombia): Federación Nacional de Cafeteros de Colombia, 1996.

HAJ NAJAFI, A., YUSOF, Y.A., RAHMAN, R.A., GANJLOO, A. and LING, C.N. Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). International Food Research Journal, 21(2), 2014, p. 625-630.

TRAFFANO-SCHIFFO, M.V., TYLEWICZ, U., CASTRO-GIRALDEZ, M., FITO, P.J., RAGNI, L. and DALLA ROSA, M. Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies, 38(Part a), 2016, p. 243-251.

ŞAHIN, U. and ÖZTÜRK, H. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science & Emerging Technologies, 36, 2016, p. 104-111.

AYALA, A., SANCHEZ, M. and RODRIGUEZ, H. influence de la osmocongelación sobre algunas propiedades físicas de papaya (Carica papaya L.). Revista U.D.C.A Actualidad & Divulgación Científica, 17(2), 2014, p. 487-494.

CORREA, J., JUSTUS, A., OLIVEIRA, L. and ALVES, G. Osmotic dehydration of tomato assisted by ultrasound: evaluation of the liquid media on mass transfer and product quality. International Journal of Food Engineering, 11(4), 2015, p. 505-516.

VIANA, A.D., CORREA, J.L. and JUSTUS, A. Optimization of pulsed vacuum osmotic dehydration of cladodes of fodder palm. International Journal of Food Science & Technology, 49(3), 2014, p. 726-732.

ASSOCIATION OF THE OFFICIAL ANALYTICAL CHEMISTS (AOAC). Official Methods of Analysis. 13th ed. Washington D.C. (USA): 1980.

ABRAAO, A.S., LEMONS, A.M., VILELA, A., SOUSA, J.M. and NUNES, F.M. Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing. 2013, 91(4), p. 481–494.

BARMAN, N. and BADWAIK, L. Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, 34, 2017, p. 37-44.

TIROUTCHELVAME, D., SIVAKUMAR, V. and PRAKASH-MARAN, J. Mass transfer kinetics during osmotic dehydration of amla (Emblica officinalis L.) cubes in sugar solution. Chemical Industry & Chemical Engineering Quarterly, 21(4), 2015, p. 547−559.

BROCHIER, B., MARCZAK, L. and NORENA, C. Use of Different Kinds of Solutes Alternative to Sucrose in Osmotic Dehydration of Yacon. Brazilian Archives of Biology and Technology, 58(1), 2015, p. 34-40.

DA SILVA, W.P., SILVA, C.M.D.P.S., LINS, M.A.A. and GOMES, J.P. Osmotic dehydration of pineapple (Ananas comosus) pieces in cubical shape described by diffusion models. LWT- Food Science and Technology, 55(1), 2014, p. 1–8.

ŞAHINA, U. and ÖZTÜRKB, H. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science & Emerging Technologies. 36, 2016, p. 104–111.

CORREA, J, ERNESTO, D., ALVES, J. and ANDRADE, R.S. Optimization of vacuum pulse osmotic dehydration of blanched pumpkin. International Journal of Food Science & Technology, 49(9), 2014, p. 2008–2014.

SINGH, F., KATIYAR, V.K. and SINGH, B.P. Analytical study of turgor pressure in apple and potato tissues. Postharvest Biology and Technology, 89, 2014, p. 44–48.

SILVA, K.S., FERNANDES, M.A. and MAURO, M.A. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 2014, p. 37–44.

VILELA, A., SOBREIRA, C., ABRAÃO, A., LEMOS A. and NUNES, F. Texture Quality of Candied Fruits as Influenced by Osmotic Dehydration Agents. Journal of Texture Studies, 47(3), 2016, p. 239–252.

ROSENTHAL, A. Instrumental characterisation of textural properties of solid and semi-solid food, In Modifying Food Texture. Sawston (UK): Jianshe Chen and Andrew Rosenthal, Woodhead Publishing, 2015, 2, p. 89-105.

ALZAMORA, S.M., CASTRO, M.A., VIDALES, S.L., NIETO, A.B. and SALVATORI, D. The roll of tissue microstructure in the textural characteristics of minimally processed fruits. In Alzamora, S.M., Tapia, M.S. & López Malo (Eds.). Minimally processed fruits and vegetables, fundamental aspects and applications. Gaithersburg (USA): Aspen Publishers, Inc., 2000, p. 153-171.

FERRARI, C. and HUBINGER, M. Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. International Journal of Food Science & Technology, 43(11), 2008, p. 2065–2074.

KROKIDA, M.K., KARATHANOS, V.T. and MAROULIS, Z.B. Compression analysis of dehydrated agricultural products. Drying Technology, 18(1–2), 2000, p. 395–408.

FERRARI, C.C., ARBALLO J.R., MASCHERONI, R.H. and HUBINGER, M.D. Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. International Journal of Food Science & Technology, 46(2), 2011, p. 436-443.

CHIRALT, A. and TALENS, P. Physical and chemical induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67(1-2), 2005, p. 166-177.

CASTELLO, M.L., FITO, P.J. and CHIRALT, A. Changes in respirationrate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 2010, 97(1), p. 64-71.

KIM, E.H.J., CORRIGAN, V.K., WILSON, A.J., WATERS, I.R., HEDDERLEY, D.I. and MORGENSTERN, M.P. Fundamental Fracture Properties Associated with Sensory Hardness of Brittle Solid Foods. Journal of Texture Studies, 43 (1), 2012, p. 49–62.

Cómo citar
Ayala Aponte, A. A., Ramirez, Y. L., & Serna Cock, L. (2017). Cambios en propiedades mecanicas durante la deshidratación osmotica de pitahaya amarilla. Biotecnología En El Sector Agropecuario Y Agroindustrial, 15(2), 39–48. https://doi.org/10.18684/BSAA(15)39-48
Publicado
2017-07-01
Sección
Artículos de Investigaciòn
QR Code