Revisión Bibliográfica Alto Consumo de Fructosa y Daño Hepático

  • Lina Ciro-Ramírez Grupo en Salud Familiar y Comunitaria. Estudiante Programa de Enfermería, Facultad de Ciencias de la Salud, Corporación Universitaria Remington.
  • Johanna Gutiérrez-Vargas Grupo en Salud Familiar y Comunitaria. Programa de Enfermería, Docente e investigadora facultad de Ciencias de la Salud, Corporación Universitaria Remington.
Palabras clave: fructosa, hígado, daño histológico, adhesión celular

Resumen

En la actualidad la ingesta de nutrientes en la dieta se caracteriza por el contenido de altos niveles de fructosa, un monosacárido encontrado en las frutas y muy usado artificialmente como edulcorante, presente en una amplia variedad de productos procesados, generando, junto a las grasas saturadas, un aumento del contenido calórico de los alimentos. Ese alto contenido calórico en el cual la fructosa aporta de manera considerable, se ha señalado como la causa de trastornos metabólicos. Aunque los azúcares son una fuente de energía inmediata necesaria, su consumo sobrepasa en muchas ocasiones el gasto energético, favoreciendo la síntesis de ácidos grasos, proceso realizado por el hígado; este órgano es un centro de regulación metabólico y a pesar de los mecanismos compensatorios que posee, la ingesta de fructosa en altas cantidades y por periodos prolongados de tiempo puede llevar a desencadenar daño tisular, por lo que es importante dilucidar los mecanismos de daño hepático que se ven reflejados en la pérdida de la funcionalidad. Por lo tanto, el objetivo de esta revisión bibliográfica es documentar la relación del alto consumo de fructosa con el deterioro hepático.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Asgharpour, A., Cazanave, S., Pacana, T., Seneshaw, M., Vincent, R., & Banini, B. (2016). A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. Journal of Hepatology, 65(3), 579–588. https://doi.org/10.1016/j.jhep.2016.05.005.A

Chukijrungroat, N., Khamphaya, T., Weerachayaphorn, J., Songserm, T., & Saengsirisuwan, V. (2017). Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver. American Journal of Physiology - Endocrinology and Metabolism, 313(2), E203–E212. https://doi.org/10.1152/ajpendo.00076.2017

Cydylo, M., Davis, A., & Kavanagh, K. (2017). Fatty Liver Promotes Fibrosis In Monkeys Consuming High Fructose. Obesity (Silver Spring), 25(2), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

Ganz, M., Bukong, T., Csak, T., Saha, B., Park, J. K., Ambade, A., … Szabo, G. (2015). Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. Journal of Translational Medicine, 13(1), 1–14. https://doi.org/10.1186/s12967-015-0552-7

Gissen, P., & Arias, I. M. (2015, October 1). Structural and functional hepatocyte polarity and liver disease. Journal of Hepatology. Elsevier. https://doi.org/10.1016/j.jhep.2015.06.015

Hajifathalian, K., Torabi Sagvand, B., & McCullough, A. J. (2019). Effect of Alcohol Consumption on Survival in Nonalcoholic Fatty Liver Disease: A National Prospective Cohort Study. Hepatology, 70(2), 511–521. https://doi.org/10.1002/hep.30226

Hintermann, C. (2019). The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells, 8(12), 1503. https://doi.org/10.3390/cells8121503

Hintermann, & Christen. (2019). The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells, 8(12), 1503. https://doi.org/10.3390/cells8121503

Hirsova, P., Bohm, F., Dohnalkova, E., Nozickova, B., Heikenwalder, M., Gores, G., & Weber, A. (2020). Hepatocyte apoptosis is tumor promoting in murine nonalcoholic steatohepatitis. Cell Death and Disease, 11(2), 1–12. https://doi.org/10.1038/s41419-020-2283-9

Ishak, K. G., Zimmerman, H. J., & Ray, M. B. (2017). Alcoholic Liver Disease: Pathologic, Pathogenetic and Clinical Aspects. Alcoholism: Clinical and Experimental Research, 38(2), 147–161. https://doi.org/10.1111/j.1530-0277.1991.tb00518.x

Krishnan, A., Abdullah, T. S., Mounajjed, T., Hartono, S., McConico, A., White, T., … Charlton, M. (2017a). A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. American Journal of Physiology - Gastrointestinal and Liver Physiology, 312(6), G666–G680. https://doi.org/10.1152/ajpgi.00213.2016

Krishnan, A., Abdullah, T. S., Mounajjed, T., Hartono, S., McConico, A., White, T., … Charlton, M. (2017b). A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. American Journal of Physiology - Gastrointestinal and Liver Physiology, 312(6), G666–G680. https://doi.org/10.1152/ajpgi.00213.2016

Li, J., Liu, H., Mauer, A. S., Lucien, F., Raiter, A., Bandla, H., … Malhi, H. (2019). Characterization of Cellular Sources and Circulating Levels of Extracellular Vesicles in a Dietary Murine Model of Nonalcoholic Steatohepatitis. Hepatology Communications, 3(9), 1235–1249. https://doi.org/10.1002/hep4.1404

Liss, K., McCommis, K., Chambers, K., Pietka, T., Schweitzer, G., Park, S., … Finck, B. (2016). The impact of diet-induced hepatic steatosis in a murine model of hepatic ischemia-reperfusion injury. Liver Transpl, 24(7), 1–21. https://doi.org/10.1038/nbt.3301.Mammalian

Lozano, I., Van Der Werf, R., Bietiger, W., Seyfritz, E., Peronet, C., Pinget, M., … Dal, S. (2016). High-fructose and high-fat diet-induced disorders in rats: Impact on diabetes risk, hepatic and vascular complications. Nutrition and Metabolism, 13(1), 1–13. https://doi.org/10.1186/s12986-016-0074-1

Luo, Y., Burrington, C., Graff, E., Zhang, J., Judd, R., Suksaranjit, P., … Greene, M. (2016). Metabolic phenotype and adipose and liver features in a high-fat western diet-induced mouse model of obesity-linked NAFLD. American Journal of Physiology - Endocrinology and Metabolism, 310(6), E418–E439. https://doi.org/10.1152/ajpendo.00319.2015

Mai, B., & Yan, L. J. (2019). The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 821–826. https://doi.org/10.2147/DMSO.S198968

Muhammad, A. (2019). Non-alcoholic fatty liver disease, an overview. Integrative Medicine, 18(2), 42–49.

Ozkan, H., & Yakan, A. (2019). Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Annals of Hepatology, 18(5), 715–724. https://doi.org/10.1016/j.aohep.2019.03.013

Panasevich, M., Meers, G., Linden, M., Booth, F., Perfield, J., Fritsche, K., … Rector, R. (2018). High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile ossabaw swine. American Journal of Physiology - Endocrinology and Metabolism, 314(1), E78–E92. https://doi.org/10.1152/ajpendo.00015.2017

Pérez, P., Gutiérrez, J., Ciro, L., Balcazar, N., & Cardona, G. (2020). High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutritional Neuroscience, 0(0), 1–15. https://doi.org/10.1080/1028415X.2020.1724453

Rahman, K., Desai, C., Iyer, S., Thorn, N., Kumar, P., Liu, Y., … Anania, F. A. (2017). Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology, 151(4), 733–746. https://doi.org/10.1053/j.gastro.2016.06.022.Loss

Ribeiro, A., Igual, M., Santos, E., & Sokal, E. (2019). Childhood Fructoholism and Fructoholic Liver Disease. Hepatology Communications, 3(1), 44–51. https://doi.org/10.1002/hep4.1291

Santhekadur, P., Kumar, D., & Sanyal, A. (2018). Preclinical models of non-alcoholic fatty liver disease. Journal of Hepatology, 68(2), 230–237. https://doi.org/10.1016/j.jhep.2017.10.031

Seki, K., Kitade, M., Nishimura, N., Kaji, K., Asada, K., Namisaki, T., … Yoshiji, H. (2018). Oral administration of fructose exacerbates liver fibrosis and hepatocarcinogenesis via increased intestinal permeability in a rat steatohepatitis model. Oncotarget, 9(47), 28638–28651. https://doi.org/10.18632/oncotarget.25587

Sullivan, J., Le, M., Pan, Z., Rivard, C., Love-Osborne, K., Robbins, K., … Sundaram, S. S. (2015). Oral fructose absorption in obese children with non-alcoholic fatty liver disease. Pediatric Obesity, 10(3), 188–195. https://doi.org/10.1111/ijpo.238

Sun, G., Jackson, C. V., Zimmerman, K., Zhang, L. K., Finnearty, C. M., Sandusky, G. E., … Wang, Y. X. (2019). The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose. BMC Gastroenterology, 19(1), 1–11. https://doi.org/10.1186/s12876-019-0958-4

Ter Horst, K., & Serlie, M. (2017). Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. https://doi.org/10.3390/nu9090981

Tsuchida, T., Lee, Y., Fujiwara, N., Ybanez, M., Allen, B., Martins, S., … Chou, H. (2017). A Simple Diet- and Chemical-Induced Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Cancer. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

Wang, M. J., Chen, F., Lau, J. T. Y., & Hu, Y. P. (2017, May 18). Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death & Disease. Nature Publishing Group. https://doi.org/10.1038/cddis.2017.167

Cómo citar
Ciro-Ramírez, L., & Gutiérrez-Vargas, J. (2020). Revisión Bibliográfica Alto Consumo de Fructosa y Daño Hepático. Revista Novedades Colombianas, 15(1), 7–19. https://doi.org/10.47374/novcol.2020.v15.1798
Publicado
2020-12-22
Sección
Artículo
QR Code