Biofilms de Pseudomonas aeruginosa como mecanismos de resistencia y tolerancia a antibióticos. Revisión narrativa

Palabras clave: Pseudomonas aeruginosa, Biofilm, Farmacorresistencia Bacteriana

Resumen

La tolerancia antimicrobiana mediada por biofilms es un grave problema, principalmente en infecciones asociadas a la atención en salud, debido a los diferentes mecanismos que expresa el biofilm como: la matriz de exopolisacaridos, alteraciones del microambiente, bacterias persistentes, señal de quorum sensing(Q.S), porinas, bombas de eflujo, expresión de genes ,vesículas de membrana, ADN extracelular y enzimas. con base a lo anterior, el objetivo de esta revisión es identificar los mecanismos y efectos del biofilm de Pseudomonas aeruginosa en la resistencia a antibióticos .Para esto, se realizo una revisión de la literatura  sobre los principales mecanismos de tolerancia en antibióticos mediada por biofilms en diferentes bases de datos como: Proquest, Science direct, Scielo , Pubmed y Google schoolar con los descriptores MeSH y DeCS. Los biofilms aumentan la tolerancia de estas bacterias a los diferentes tipos de antibióticos, ya que cuando se exponen a cantidades mínimas de este genera la expresión de diferentes genes que expresan mecanismos  que disminuyen la penetración y destrucción de los antibióticos sin embargo, no está bien definidos todos los factores que generan este tipo de tolerancia

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Andres Felipe Bolivar-Vargas, Universidad de Boyacá

Universidad de Boyacá, Facultad de Ciencias de la Salud, Bacteriología y laboratorio clínico, Tunja, Colombia

María Inés Torres-Caycedo, Universidad de Boyacá

Universidad de Boyacá, Facultad de Ciencias de la Salud, Bacteriología y laboratorio clínico, Tunja, Colombia

Yaline Sánchez Neira, Universidad de Boyacá

Universidad de Boyacá, Facultad de Ciencias de la Salud, Bacteriología y laboratorio clínico, Tunja, Colombia

Referencias bibliográficas

Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of gramnegative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes. 2019; 12(1)

Villanueva-Ramos NB, De la Mora-Fernández AR, RíosBurgueño ER, de Peraza-Garay FJ. Detección de biopelículas en tejido de amígdalas y adenoides en pacientes con procesos infecciosos crónicos y obstructivos. Anales de Otorrinolaringología Mexicana. 2019; 64

Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun. 2019;10(1):1-10. Doi. https://doi.org/10.1038/s41467-019-08733-w

Romeo A. Biofilm y resistencia antimicrobiana. Arch Med camagüey. 2020; 24(4):1-4

Valen H, Scheie AA. Biofilms and their properties. Eur J Oral Sci. 2018; 126:13-8

Del Pozo JL. Biofilm-related disease. Expert Review of AntiInfective Therapy. Taylor and Francis Ltd. 2018; 16:51-65.

European Centre for Disease Prevention and Control, “Surveillance Report. Surveillance of antimicrobial resistance in Europe 2016”. 2017

Kohlenberg, A.; Weitzel-Kage, D.; van der Linden, P. et al. Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa Infection in a Surgical Intensive Care Unit. J. Hosp. Infect. 2010; 74(4):350-357

Naze, F.; Jouen, E.; Randriamahazo, R. T. et al. Pseudomonas aeruginosa Outbreak Linked to Mineral Water Bottles in a Neonatal Intensive Care Unit: Fast Typing by Use of High-Resolution Melting Analysis of a Variable-Number Tandem-Repeat Locus. J. Clin. Microbiol. 2010; 48(9):3146-3152

Chua SL, Yam JKH, Hao P, Adav SS, Salido MM, Liu Y, et al. Selective labelling and eradication of antibioticTolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commu. 2016; 7(1):1-11

Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. Journal of Molecular Biology. Academic Press. 2015; 427:3628-45

Peña S-GG. Producción de biopelículas y resistencia antimicrobiana en uropatógenos aislados de catéteres urinarios en un hospital de rehabilitación física. 2017; 6(3):115-21

Heidari H, Hadadi M, Sedigh Ebrahim-Saraie H, Mirzaei A, Taji A, Hosseini SR, et al. Characterization of virulence factors, antimicrobial resistance patterns and biofilm formation of Pseudomonas aeruginosa and Staphylococcus spp. strains isolated from corneal infection. J Fr Ophtalmol. 2018; 41(9):823-9

Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. Vol. 58, American Journal of Respiratory Cell and Molecular Biology. American Thoracic Society. 2018; 58:428–39

Rodrigues ME, Lopes SP, Pereira CR, Azevedo NF, Lourenço A, Henriques M, et al. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. Sturtevant J, editor. PLoS One. 2017; 12(1):e0170433

Zhou ZY, Hu BJ, Gao XD, Bao R, Chen M, Li HY. Sources of sporadic Pseudomonas aeruginosa colonizations/infections in surgical ICUs: Association with contaminated sink trap. J Infect Chemother. 2016; 22(7):450-5

Pericolini E, Colombari B, Ferretti G, Iseppi R, Ardizzoni A, Girardis M, et al. Real-time monitoring of Pseudomonas aeruginosa biofilm formation on endotracheal tubes in vitro. BMC Microbiol. 2018;18(1)

Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E, Calleja I, et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: A state of concept. Crit Care. 2012; 16(3):R93

Werneburg GT, Nguyen A, Henderson NS, Rackley RR, Shoskes DA, Le Sueur AL, et al. The Natural History and Composition of Urinary Catheter Biofilms: Early Uropathogen Colonization with Intraluminal and Distal Predominance. J Urol. 2020; 203(2):357–64

Stickler DJ. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med. 2014; 276(2):120-9. Doi: http://doi.wiley.com/10.1111/joim.12220

Oluyombo O, Penfold CN, Diggle SP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. MBio. 2019;10(1). Doi: https://doi.org/10.1128/mBio.01828-18

Zarza VMP, Mordani SM, Maldonado AM, Hernández DÁ, Georgina SGS, Vázquez-López R. Pseudomonas aeruginosa: Pathogenicity and antimicrobial resistance in urinary tract infection. Rev Chil Infectol. 2019; 36(2):180-9

Jerković-Mujkić A. Biofilm formation and antimicrobial susceptibility of Pseudomonas aeruginosa in the indoor and outdoor environment (CIBTech Journal of Microbiology). J Microbiol. 2019; 8(2):23-30

Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe. 2019; 25(4):526-536.e4

Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol. 2020; 10(2):12–32

Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015(7):17

Bermúdez, Lázaro-Gonzáles M. La biopelícula: una nueva concepción de la placa dentobacteriana. mediocentro Electron. 2016; 20(3):2-10

Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology. Nature Publishing Group. 2018; 16:397-409

Xu X, Yu H, Zhang D, Xiong J, Qiu J, Xin R, et al. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiological Research 2016;192:84–95. https://doi.org/10.1016/j.micres.2016.06.005.

Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J. 2017; 11(1):53-62

Ortega-Peña S, Hernández-Zamora E. Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. 2018; 75:79–88

Mulet Aguiló FJ. Caracterización del mutante nfxB de Pseudomonas aeruginosa: papel en la resistencia antibiótica de los biofilms e interacción con los mecanismos de resistencia intrínsecos. Universitat de les Illes Balears; 2015;7

Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, et al. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms Microbiomes. 2016; 2:16012

Yan J, Bassler BL. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host and Microbe. Cell Press. 2019; 26:15-21

Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of gramnegative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes. 2019; 12(1):38

Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today. Elsevier Ltd. 2019; 24:350-9

Stewart PS. Antimicrobial Tolerance in Biofilms. Microbiol Spectr. 2015; 3(3):16–10

Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry. Elsevier Ltd. 2020; 96:49-57

Troncoso C, Pavez M, Santos A, Salazar R, Barrientos Díaz L. Implicancias estructurales y fisiológicas de la célula bacteriana en los mecanismos de resistencia antibiótica. Int J Morphol. 2017; 35(4):1214-23

Raavi, Mishra S, Singh S. Prevention of OprD regulated antibiotic resistance in Pseudomonas aeruginosa biofilm. Microb Pathog. 2017; 112:221-9

Al Marjania MF, Kouhsari E, Ali FS, Authman SH. Evaluation of type II toxin-antitoxin systems, antibiotic resistance profiles, and biofilm quorum sensing genes in Acinetobacter baumannii isolates in Iraq. Infect Disord - Drug Targets. 2020; 20:133-9

Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews. Oxford University Press; 2017; 41:698-722

Stewart PS, Franklin MJ, Williamson KS, Folsom JP, Boegli L, James GA. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2015; 59(7):3838–47

Rocha AJ, De Oliveira Barsottini MR, Rocha RR, Laurindo MV, De Moraes FLL, Da Rocha SL. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance Genes. Vol. 62, Brazilian Archives of Biology and Technology. Instituto de Tecnologia do Parana. 2019; 62:1-15

Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, Karami M, Dastan D, et al. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 2020; 18:100561

Ghazalibina M, Morshedi K, Farahani RK, Babadi M, Khaledi A. Study of virulence genes and related with biofilm formation in Pseudomonas aeruginosa isolated from clinical samples of Iranian patients; A systematic review. Gene Reports. Elsevier Inc. 2019; 17:100471

Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosaCan escape antibiotics. Frontiers in Microbiology. Frontiers Media S.A. 2019; 10:913

Hall CW, Mah TF. Molecular mechanisms of biofilmbased antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews. Oxford University Press. 2017; 41:276-301

Miryala SK, Anbarasu A, Ramaiah S. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps. Microb Pathog. 2019;136

Wang W, Chanda W, Zhong M. The relationship between biofilm and outer membrane vesicles: A novel therapy overview. FEMS Microbiol Lett. 2015; 362(15):117

Cooke AC, Nello A V., Ernst RK, Schertzer JW. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. Hozbor DF, editor. PLoS One. 2019; 14(2):e0212275

Vitse J, Devreese B. The Contribution of Membrane Vesicles to Bacterial Pathogenicity in Cystic Fibrosis Infections and Healthcare Associated Pneumonia. Front Microbio. 2020; 11:630

Wilton M, Charron-Mazenod L, Moore R, Lewenza S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016; 60(1):544-53

Li Y, Xiao P, Wang Y, Hao Y. Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega. American Chemical Society. 2020; 5:22684-90. Doi: https://dx.doi.org/10.1021/acsomega.0c02294

Al-Wrafy F, Brzozowska E, Górska S, Gamian A. Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Higieny i Medycyny Doswiadczalnej. Polska Akademia Nauk. 2017; 71:78–91

Cómo citar
(1)
Bolivar-Vargas, A. F.; Torres-Caycedo, M. I.; Sánchez-Neira, Y. Biofilms De Pseudomonas Aeruginosa Como Mecanismos De Resistencia Y Tolerancia a antibióticos. Revisión Narrativa. Rev. Fac. Cienc. Salud Univ. Cauca 2021, 23, 47-57.
Publicado
2021-11-22