ncreased tolerance of casuarina equisetifolia to sodium chloride caused by pseudomonas fluorescens

  • Ma. del Carmen Rocha Granados Universidad Michoacana de San Nicolás de Hidalgo
  • Mario Alberto Cubillo Constantino Universidad Michoacana de San Nicolás de Hidalgo
  • Patricia Delgado Valerio Universidad Michoacana de San Nicolás de Hidalgo
  • Jesús García Magaña Universidad Michoacana de San Nicolás de Hidalgo
  • Gustavo Santoyo Universidad Michoacana de San Nicolás de Hidalgo
Keywords: Bacteria;, NaCl;, Salinity;, Stress

Abstract

The use of tolerant species and beneficial microorganisms is an alternative in the recovery of saline soils. The objective of this research was to evaluate the efficiency of casuarina as a species tolerant to salinity and the effect of Pseudomonas fluorescens on this condition. This research tested salinity tolerance of casuarina and the additive effect of Pseudomonas fluorescens inoculation. The effect of sodium chloride (NaCl) on the casuarina germination was determined, the soil-plant interaction was analyzed on its tolerance to salinity and the effect of Pseudomonas flourescens strains (UM16, UM240, UM256 and UM270) on increased NaCl tolerance in casuarina. Results show that casuarina seed germination was delayed proportionally to NaCl concentration. NaCl tolerance was observed in dry biomass weight which decreased 3,50 to 23,48% in the roots and 1,18 to 30,66% in the aerial parts when compared to the absolute control. Innoculation of P. fluorescens strain UM256 increased dry biomass weight in the root and aerial part by 10,06 and 18,70%, respectively, when compared to the NaCl-treated control. In conclusion, the best result was for the plants that were inoculated with P. fluorescens strain UM256 which increases the tolerance of the plants to soil salinity conditions.

Downloads

Download data is not yet available.

Author Biographies

Ma. del Carmen Rocha Granados, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Agrobiología “Presidente Juárez”. Profesor Investigador.

Mario Alberto Cubillo Constantino, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Agrobiología “Presidente Juárez”. Ingeniero Agrónomo

Patricia Delgado Valerio, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Agrobiología “Presidente Juárez” Profesor Investigador

Jesús García Magaña, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Agrobiología “Presidente Juárez”. Profesor Investigador.  

Gustavo Santoyo, Universidad Michoacana de San Nicolás de Hidalgo

Instituto de Investigaciones Químico-Biológicas. Profesor e Investigador

References

HUSSAIN, M. et. al. Rice in salinity soils: Physiology, biochemistry, genetic, and management. Advances in Agronomy, 148, 2018, p. 231-287.

RANA, D.S. et. al. Biotic and abiotic stress management in pulses. Indian Journal of Agronomy, 61, 2016, p. 238-248.

ABBASI, H. et. al. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in allevisting in: a review. Žemdirbysté. Agriculture, 103(2), 2016, p. 229-238.

KHORASGANI, O.A., MORTAZAEINEZHAD, F. and RAFIEE, P. Variation on plant growth, oil quantity and quality and mineral nutrients of chamomile genotypes under salinity stress. Journal of Central European Agriculture, 18(1), 2017, p.150-168.

ZHAO, S. et. al. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientifc Reports, 8, 2018, p.4550, DOI:10.1038/s41598-018-22788-7.

ZHANG, Z. et. al. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Science of the total environment, 581(582), 2017, p. 657-665, DOI: 10.1016/j.scitotenv.2016.12.176

LEÓN-LORENZANA, A.E. et. al. Reducing salinity by flooding extremely alkaline and saline soil changes the bacterial community but its effect on the Archaeal community is limited. Frontiers in Microbiology, 8, 2017, p. 1-10.

TALEISNIK, E. y LÓPEZ-LAUNESTEIN, D. Leñosas perennes para ambientes afectados por la salinidad: una sinopsis de la contribución argentina a este tema. Ecología Austral, 21, 2011, p. 3-14.

KUMAR, V. Casuarina equisetifolia L.: A potential tree. Jabalpur (India): Tropical Forest Research Institute Van Sangyan, 3(9), 2016, p.14-17.

SUN, W.H. Phytorremediation of petroleum hydrocarbons in tropical coastal soils I. Selection of promising woody plants. Environmental Science and Pollution Research, 11, 2004, p. 260-266.

MISHRA, J., TAHMISH, F. and NAVEEN-KUMAR, A. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Plant Microbiome: Stress response, microorganisms for sustainability. Singapore (Singapore): D. Egamberdieve and P. Ahmad, Srping Nature, Chapter 6, 2018, p.127-162.

TEWARRI, S. and ARORA, N.K. Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and bicontrol agent for sunflower crop under saline conditions. Symbiosis, 68(1-3), 2016, p. 99-108, DOI.org/10.1007/s13199-016-0389-8.

HERNÁNDEZ-SALMERÓN, J.E. et. al. Draft genome sequence of the biocontrol and plant growth-promoting rhizobacterium Pseudomonas fluorescens strain UM270. Stand Genomic Science, 11(5), 2016, DOI: 10.1186/s40793-015-0123-9.

ROJAS-SOLÍS, D, HÉRNANDEZ-PACHECO, C.E. y SANTOYO, G. Evaluación de Bacillus y Pseudomonas para la rizósfera y su efecto en la promoción del crecimiento en tomate (Physalis ixocarpa Brot. ex Horm.) Revista Chapingo Serie Horticultura, 22, 2016, p. 45-58.

MÉXICO. COMISIÓN NACIONAL PARA EL CONOCIMIENTO Y USO DE LA BIODIVERSIDAD (CONABIO). Ficha técnica sobre Casuarina equisetifolia L [en línea]. 2009. Disponible en:http://www.conabio.gob.mx/malezasdemexico/casuarinaceae/casuarinaequisetifolia/fichas/ficha.htm [Consultado en febrero del 2019].

SINGH, V. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 255, 2018, p.1667-1681.

CUNHA, J.R. Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environmental and Experimantal Botany, 131, 2016, p. 58-67.

SINGH, J., SINGH, V. and SHAMA, P.C. Elucidating the role of osmotic, ionic and major salt responsive transcript component towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiology and Molecular Biology of Plants, 24(3), 2018, p.441-453.

ANNUNZIATA, M.G. et. al. Durum wheat roots adapt to slinity remodeling the celular of nitrogen metabolites and sucrose. Frontiers in Plant Science, 7, 2017, p. 2035, DOI: 10.3389/fpls.2016.02035.

KHUNT, M.D. and MEHTA, B.P. Efficacy of plant growth promoting rhizobacteria on mungbean root and shoot under salinity stress conditions. International Journal of Current Microbiology and Applied Science, 6(10), 2017, p. 3616-3622.

HERNÁNDEZ-LEÓN, R. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81, 2015, p. 83-92.

MISHRA, J., FATIMA, T. and KUMAR. A.N. Chapter 6: Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Microorganisms for sustainability. Berlin (Germany): Springer, 2018, p. 127-163.

NADEEM, S.M. et. al. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of Microbiology, 198(4), 2016, p.379-387.

How to Cite
Rocha Granados, M. del C. ., Cubillo Constantino, M. A. ., Delgado Valerio, P. ., García Magaña, J. ., & Santoyo, G. . (2019). ncreased tolerance of casuarina equisetifolia to sodium chloride caused by pseudomonas fluorescens. Biotechnology in the Agricultural and Agroindustrial Sector, 17(2), 15–23. https://doi.org/10.18684/bsaa.v17n2.1249
Published
2019-07-01
Section
Artículos de Investigaciòn
QR Code