Adsorption of chrome (VI) and mercury (II) in solution using hyacinth (Eichhornia crassipes)

  • Candelaria Tejada Tobar Universidad de Cartagena https://orcid.org/0000-0002-2323-1544
  • Isabel Cristina Paz Astudillo University of Tolima
  • Diofanor Acevedo Correa
  • María Espinosa Fortich University of Cartagena
  • Cristina López Badel University of Cartagena
Palabras clave: Biomasa residual, Adsorcion, Metales pesados, Modelo de Freundlich, Eichhornia crassipes

Resumen

La existencia de proliferación de Jacinto acuático en los humedales del Canal del Dique (Bolívar-Colombia) causa problemas ambientales por no existir una disposición final de estos. Por lo tanto, es necesario estudiar alternativas para su uso. El objetivo del estudio fue evaluar el comportamiento del Jacinto acuático como adsorbente de cromo (VI) y mercurio (II) en una solución preparada sintéticamente. El material lignocelulósico se secó a 80°C durante 24 h para eliminar la humedad; luego se trituró y tamizó con mallas de diferentes tamaños de partículas; se caracterizó mediante análisis elementales para comprobar la presencia de celulosa, hemicelulosa y lignina, así como mediante espectrometría de infrarrojos por transformada de Fourier para verificar la existencia de grupos funcionales responsables del proceso de adsorción. Se encontró que el mejor tamaño de partícula era de 1 mm, con un porcentaje de remoción de 73,4 y 79,3% para el cromo y el mercurio, respectivamente. Al establecer la cinética de adsorción se comprobó que el porcentaje de eliminación aumenta con el tiempo hasta 5,5 h de contacto con la solución de mercurio y 3,8 h con la solución de cromo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

YU, HAIHAO; DONG, XIANRU; YU, DAN; LIU, CHUNHUA; FAN, SHUFENG. Effects of eutrophication and different water levels on overwintering of Eichhornia crassipes at the northern margin of its distribution in China. Frontiers in plant science, v. 10, 2019, p. 1–11.

https://doi.org/10.3389/fpls.2019.01261

TEJADA-TOVAR, CANDELARIA; PAZ-ASTUDILLO, ISABEL; VILLABONA-ORTÍZ, ÁNGEL; ESPINOSA-FORTICH, MARÍA; LÓPEZ-BADEL, CRISTINA Aprovechamiento del Jacinto de Agua (Eichhornia crassipes) para la síntesis de carboximetilcelulosa. Revista Cubana de Química, v. 30, n. 2, 2018, p. 211-221.

ZHANG, QIAN; LUO, FANG-LI; DONG, BI-CHENG. Does species richness affect the growth and water quality of submerged macrophyte assemblages?. Aquatic botany, v. 153, 2019, p. 51-57.

https://doi.org/10.1016/j.aquabot.2018.11.006

MARIMÓN-BOLÍVAR, WILFREDO; TEJEDA-BENÍTEZ, LESLY; HERRERA, ADRIANA-P. Removal of Hg (II) (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environmental nanotechnology, monitoring & management, v. 10, 2018, p. 486-493.

https://doi.org/10.1016/j.enmm.2018.10.001

TEJADA-TOVAR, CANDELARIA; VILLABONA-ORTÍZ, ÁNGEL; GONZÁLEZ-DELGADO, ÁNGEL-DARÍO; JIMÉNEZ-VILLADIEGO, MARÍA. Kinetics of Hg (II) and nickel adsorption using chemically pretreated cocoa (Theobroma cacao) husks. Transactions of the ASABE, v. 62, n. 2, 2019, p. 461-466.

VILLABONA-ORTIZ, ÁNGEL; TEJADA-TOVAR, CANDELARIA; GONZÁLEZ-DELGADO, ÁNGEL;HERRERA-BARROS, ADRIANA; CANTILLO-ARROYO, GINA. Immobilization of lead and nickel ions from polluted yam peels biomass using cement-based solidification/stabilization technique. International Journal of Chemical Engineering, v. 2019, 2019, p. 8.

https://doi.org/10.1155/2019/5413960

DAI, YINGJIE; SUN, QIYA; WANG, WENSI; LU, LU; LIU, MEI; LI, JINGJING; YANG, SHENGSHU; SUNG, YUE; ZHANG, KEXIN; XU, JIAYI; ZHENG, WENLEI; HU, ZHAOYUE; YANG, YAHAN; GAO, YUEWEN; CHEN, YANJUN; ZHANG, ZU; GAO, FENG; ZHANG, YING. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, v. 211, 2018, p. 235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

GÓMEZ-AGUILAR, DORA-LUZ; RODRÍGUEZ-MIRANDA, JUAN-PABLO; ESTEBAN-MUÑOZ, JAVIER-ANDRÉS; BETANCUR, JHON-FREDY. Coffee Pulp: A sustainable alternative removal of Cr (VI) in wastewaters. Processes, v. 7, n. 7, 2019, p. 403.

https://doi.org/10.3390/pr7070403

MANJULADEVI, M.; ANITHA, R.; MANONMANI, S. Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied water science, v. 8, n. 1, 2018, p. 36. https://doi.org/10.1007/s13201-018-0674-1

ASUQUO, EDIDIONG; MARTIN, ALASTAIR; NZEREM, PETRUS; SIPERSTEIN, FLOR; FAN, XIAOLEI. Adsorption of Cd (II) and Pb (II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of environmental chemical engineering, v. 5, n. 1, 2017, p. 679-698. https://doi.org/10.1016/j.jece.2016.12.043

UL-HAQ, ATTA; SAEED, MUHAMMAD; ANJUM, SALMA; HUSSAIN-BOKHARI, TANVEER; USMAN, MUHAMMED; TUBBSUM, SAIQA. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels. Journal of oleo science, v. 66, n. 7, 2017, p. 735-743.

https://doi.org/10.5650/jos.ess17020

VILLABONA-ORTÍZ, A.; TEJADA-TOVAR, C.N.; ORTEGA-TORO, R. Modelling of the adsorption kinetics of Cr (VI) (VI) using waste biomaterials. Revista Mexicana de Ingeniería Química, v. 19, n. 1, 2020, p. 401-408.

https://doi.org/10.24275/rmiq/IA650

AFROZE, SHARMEEN; SEN, TUSHAR-KANTI. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air, & Soil Pollution, v. 229, n. 7, 2018, p. 225.

https://doi.org/10.1007/s11270-018-3869-z

PARLAYICI, ŞERIFE; PEHLIVAN, EROL. Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic. Journal of Analytical Science and Technology, v. 10, n. 1, 2019, p.15.

https://doi.org/10.1186/s40543-019-0175-3

ROMERO-CANO, LUIS A.; GARCÍA-ROSERO, HELENA; GONZALEZ-GUTIERREZ, LINDA V.; BALDENEGRO-PÉREZ, LEONARDO A.; CARRASCO-MARÍN, FRANCISCO. Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of cleaner production, v. 162, 2017, p. 195-204. Ç

https://doi.org/10.1016/j.jclepro.2017.06.032

NEGM, NABEL A.; ABD-EL-WAHED, MOHAMED; HASSAM, ABDEL-RAHMAN; ABOU-KANA, MARAM. Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. Journal of Molecular Liquids, v. 264, 2018, p. 292-305.

https://doi.org/10.1016/j.molliq.2018.05.027

BATAGARAWA, SAMAILA-MUAZU; AJIBOLA, ALAYANDE-KEHINDE. Comparative evaluation for the adsorption of toxic heavy metals on to millet, corn and rice husks as adsorbents. Journal of Analytical and Pharmaceutical Research, v. 8, n. 3, 2019, p. 119-125.

https://doi.org/10.15406/japlr.2019.08.00325

TEJADA-TOVAR, CANDELARIA; HERRERA-BARROS, ADRIANA; VILLABONA-ORTÍZ, ANGEL. Assessment of chemically modified lignocellulose waste for the adsorption of Cr (VI). Revista Facultad de Ingeniería, v. 29, n. 54, 2020, p. e10298-e10298.

https://doi.org/10.19053/01211129.v29.n54.2020.10298

HERRERA-BARROS, ADRIANA; TEJADA-TOVAR, CANDELARIA; VILLABONA-ORTÍZ, ÁNGEL; GONZÁLEZ-DELGADO, ÁNGEL; REYES-RAMOS, ANA. Synthesis and characterization of cassava, yam and lemon peels modified with TiO2 nanoparticles. Contemporary Engineering Sciences, v. 11, n. 38, 2018, p. 1863–1871.

https://doi.org/10.12988/ces.2018.84186

TEJADA-TOVAR, CANDELARIA; VILLABONA-ORTÍZ, ANGEL; RUIZ-PATERNINA, ERIKA. Adsorción de Ni (II) por cáscaras de ñame (Dioscórea rotundata) y bagazo de palma (Elaeis guineensis) pretratadas. Revista Luna Azul, v. 42, 2016, p. 30-43.

TEJADA-TOVAR, CANDELARIA; GALLO-MERCADO, JORGE; MOSCOTE, JEISON; VILLABONA, ÁNGEL; ACEVEDO-CORREA, DIOFANOR. Adsorción competitiva de plomo y niquel sobre cáscara de ñame y bagazo de palma en sistema continuo. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 16, n. 1, 2018, p. 52-61.

https://doi.org/10.18684/bsaa.v16n1.624

TEJADA, CANDELARIA; HERRERA, ADRIANA; RUIZ, ERIKA. Kinetic and isotherms of biosorption of Hg (II) using citric acid treated residual materials. Ingeniería y competitividad, v. 18, n. 1, 2016, p. 117-127.

SINGH, KULBIR; ABDULLAHI, WAZIRI-SADIQ; RAM, CHHOTU. Removal of hmetals by Adsorption using agricultural based residue: A Review. Research Journal of Chemistry and Environment, v. 22, n. 5, 2018, p. 65–74.

RODRIGUEZ-SOTO, K.X.; PIÑEROS-CASTRO, N.Y.; ORTEGA-TORO, R. Laminated composites reinforced with chemically modified sheets-stalk of Musa cavendish. Revista Mexicana de Ingeniería Química, v. 18, n .2, 2019, p. 749-758.

https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/RodriguezS

ABDOLALI, ATEFEH; NGO, HUU-HAO; GUO, WENSHAN; ZHOU, JOHN L.; ZHANG, SHUANG; CHANG, SOON W.; NGUYEN, DINH-DUC; LUI, YI. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource technology, v. 229, 2017, p. 78-87.

https://doi.org/10.1016/j.biortech.2017.01.016

KHALIFA, E. BEN; RZIG, B.; CHAKROUN, R.; NOUAGUI, H.; HAMROUNI, B. Application of response surface methodology for Cr (VI) removal by adsorption on low-cost biosorbent. Chemometrics and Intelligent Laboratory Systems, v. 189, 2019, p. 18-26.

https://doi.org/10.1016/j.chemolab.2019.03.014

Yi, YUNHONG; LV, JUNLIANG; LIU, YI; WU, GONGQING Synthesis and application of modified Litchi peel for removal of hexavalent Cr (VI) from aqueous solutions. Journal of Molecular Liquids, v. 225, 2017, p. 28-33.

https://doi.org/10.1016/j.molliq.2016.10.140

NAIK, RADNEY-MOHAN; RATAN, S.; SINGH, I. Use of orange peel as an adsorbent for the removal of Cr (VI) from its aqueous solution. Indian Journal of Chemical Technology, v. 25, n. 3, 2018, p. 300–305.

ROSALES, A.G.; RODRÍGUEZ, C.D.; BALLEN-SEGURA, M. Remoción de contaminantes y crecimiento del alga Scenedesmus sp. en aguas residuales de curtiembres, comparación entre células libres e inmovilizadas. Ingeniería y Ciencia, v. 14, n. 28, 2018, p. 11-34.

https://doi.org/10.17230/ingciencia.14.28.1

DOKE, KAILAS; KHAN, EJAZUDDIN. Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arabian journal of chemistry, v. 10, n. 1, 2017, p. S252-S260.

https://doi.org/10.1016/j.arabjc.2012.07.031

ASUQUO, EDIDIONG; MARTIN, ALASTAIR. Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: characterisation, kinetic and isotherm studies. Journal of environmental chemical engineering, v. 4, n. 4, 2016, p. 4207-4228.

https://doi.org/10.1016/j.jece.2016.09.024

KUPPUSAMY, SARANYA; THAVAMANI, PALANISAMI; MEGHARAJ, MALLAVARAPU; VENKATESWARLU, KADIYALA; LEE, YONG-BOK; NAIDU, RAVI. Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent Cr (VI) removal from aquatic ecosystems and industrial effluents. Water, Air & Soil Pollution, v. 227, n. 2, 2016, p. 62.

https://doi.org/10.1007/s11270-016-2760-z

LIANG, XIAOLIANG; WEI, GAOLING; XIONG, JUAN; TAN, FUDING; HE, HONGPING; QU, CHENCHEN; YIN, HUI; ZHU, JIANXI; ZHU, RUNLIANG; QIN, ZONGHUA; ZHANG, JING. Adsorption isotherm, mechanism, and geometry of Pb (II) on magnetites substituted with transition metals. Chemical Geology, v. 470, 2017, p. 132-140.

https://doi.org/10.1016/j.chemgeo.2017.09.003

ALI, ASHRAF; SAEED, KHALID; MABOOD, FAZAL. Removal of Cr (VI) (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandria Engineering Journal, v. 55, n. 3, 2016, p. 2933-2942.

https://doi.org/10.1016/j.aej.2016.05.011

GARBA, ZAHARADDEEN; UGBAGA, NKOLE; ABDULLAHI, AMINA. Evaluation of optimum adsorption conditions for Ni (II) and Cd (II) removal from aqueous solution by modified plantain peels (MPP). Beni-Suef University Journal of Basic and Applied Sciences, v. 5, n. 2, 2016, p. 170-179.

https://doi.org/10.1016/j.bjbas.2016.03.001

HU, XIAOLAN; XUE, YINGWEN; LIU, LINA; ZENG, YIFAN; LONG, LI. Preparation and characterization of Na 2 S-modified biochar for nickel removal. Environmental Science and Pollution Research, v. 25, n. 10, 2018, p. 9887-9895.

https://doi.org/10.1007/s11356-018-1298-6

SHEN, ZHENGTAO; ZHANG, YUNHUI; MCMILLAN, OLIVER; JIN, FEI; AL-TABBAA, ABIR. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, v. 24, n. 14, 2017, p. 12809-12819.

https://doi.org/10.1007/s11356-017-8847-2

SUDHA, R.; PREMKUMAR, P.; RAMASAMY, S. Comparative studies on the removal of Cr (VI) (VI) from aqueous solutions using raw and modified citrus limettioides peel. Indian Journal of Chemical Technology (IJCT), v. 25, n. 3, 2018, p. 255-265.

LIN, CHAO; LUO, WENJUN; LUO, TIANTIAN; ZHOU, QI; LI, HAIFENG; JING, LURU. A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism. Journal of cleaner production, v. 196, 2018, p. 626-634.

https://doi.org/10.1016/j.jclepro.2018.05.279

KAR, SHANTI; EQUEENUDDIN, S.M. Adsorption of hexavalent Cr (VI) using natural goethite: isotherm, thermodynamic and kinetic study. Journal of the Geological Society of India, v. 93, n. 3, 2019, p. 285-292.

https://doi.org/10.1007/s12594-019-1175-z

ALLAHDIN, OSCAR; MABINGUI, JOSEPH; WARTEL, MICHEL; BOUGHRIET, ABDEL. Removal of Pb2+ ions from aqueous solutions by fixed-BED column using a modified brick: (micro) structural, electrokinetic and mechanistic aspects. Applied Clay Science, v. 148, 2017, p. 56-67.

https://doi.org/10.1016/j.clay.2017.08.002

LEE, CHANG-GU; LEE, SOONJAE; PARK, JEONG-ANN; PARK, CHANHYUK; LEE, SANG-JEONG; KIM, SONG-BAE; AN, BYUNGRYUL; YUN, SEONG-TAEK; LEE, SANG-HYUP; CHOI, JAE-WOO. Removal of copper, nickel and Cr (VI) mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, v. 166, 2017, p. 203-211.

https://doi.org/10.1016/j.chemosphere.2016.09.093

Cómo citar
Tejada Tobar, C. ., Paz Astudillo, I. C., Acevedo Correa, D., Espinosa Fortich, M. ., & López Badel, C. (2020). Adsorption of chrome (VI) and mercury (II) in solution using hyacinth (Eichhornia crassipes). Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(1), 54–65. https://doi.org/10.18684/bsaa.v19.n1.2021.1563
Publicado
2020-07-01
Sección
Artículos de Investigaciòn
QR Code