Las biopelículas en la industria de alimentos

  • Diana Paola Navia Universidad del Cauca
  • Héctor Samuel Villada Castillo Universidad del Cauca.
  • Silvio Andres Mosquera Sanchez Universidad del Cauca.
Palabras clave: Biopelícula, Adhesión bacteriana, Procesamiento de alimentos, Sanitizantes.

Resumen

Algunos microorganismos útiies y bacterias patógenas como por ejemplo

Pseudomonas, Vibrio, Escherichia, Salmonella, Listeria, Streptococcus,

Staphyiococcus, IVIycobacteria, tienen la capacidad de adherirse y crecer

en los alimentos ylo en las superficies que están en contacto con ellos

formando biopeiiculas. Estas son significativamente importantes en el cam¬

po alimentario porque causan serios problemas que dificultan y perjudican

las operaciones y los procesos al generar pérdidas de energía, reducción

del flujo (en tuberías) y transferencia de calor, y taponamiento de poros

de membranas, entre otros. Este documento considera los aspectos bio¬

lógicos y fisicoquímicos relacionados con la formación y desarrollo de las

biopeiiculas, lo cual, unido al desarrollo de metodologías de diagnóstico e

identificación, permitirán desarrollar estrategias que faciliten la prevención

y control de la contaminación en la industria de alimentos para mantener

los sistemas libres de biopeiiculas y favorecer la calidad y seguridad de

los alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es;en

Biografía del autor/a

Diana Paola Navia, Universidad del Cauca
Ingeniera Agroindustrial, Universidad del Cauca, Facultad Ciencias Agropecuarias, Grupo CYTBIA
Héctor Samuel Villada Castillo, Universidad del Cauca.
Doctor en Ingeniería de Alimentos, Docente Departamento de Agroindustria, Facultad de Ciencias Agropecuarias
Silvio Andres Mosquera Sanchez, Universidad del Cauca.
Ingeniero Industrial de Alimentos. Especialista en 9erencia de Producción. Magíster en Ingeniería. Docente Departamento de Agroindustria, Facultad de Ciencias Agropecuarias.

Referencias bibliográficas

C0STERT0N, J. Introduction to biofilm: Discus- sion, Int J Antimicrob Ag., 11, 217–221, 1999.

CHMIELEWSKI, R. and FRANK, J. Biofilm For- mation and Control in food Processing Facilities, Compr Rev Food Sci Food Saf., 2, 22-32, 2003.

CARPENTIER, B. and CERF, 0. Biofilms and their conse¢uences, with particular reference to hygiene in the food industry: Review, J Appl Bacteriol., 75, 499-511, 1993.

"GARRETT, T.; BHAK00, M. and ZHAN9, Z. Bacterial adhesion and biofilms on surfaces, Review, Prog Nat Sci., 18; 1049–1056, 2008."

"SANDASI, M.; LE0NARD, C. and VILJ0EN, A. The effect of five common essential oil components on Listeria monocytogenes biofilms, Food Control., 19, 1070–1075, 2008."

P0ULSEN, L. Microbial Biofilm in Food Processing. Review, Lebensm Wiss Technol., 32, 321-326. 1999.

"SHARMA M.; EASTRID9E, J. and MUDD, C. Effective household disinfection method of kitchen sponges, Food Control., 20, 310–313, 2009."

ABEE, T. et al. 9ermination and outgrowth of spo- res of Bacillus cereus group members: Diversity and role of germinant receptors, Food Microbiol., In Press.

M0RIKAWA, M. Beneficial Biofilm Formation by Industrial Bacteria Bacillus subtilis and Related Species: Review. J Biosci Bioeng., 101, 1–8, 2006.

STEPHENS, C. Microbiology: Breaking Down Biofilms, Curr Biol., 12, R132–R134, 2002.

KUMAR, 9. and ANAND, S. Significance of micro- bial biofilms in food industry:A review,. Int J Food Microbiol, 42, 9–27,1998.

HALL-ST00DLEY L. and ST00DLEY P. Develop- mental regulation of microbial biofilms, Curr 0pin Biotech.,13, 228–233, 2002.

CHAVANT, P. et al. A new device for rapid evalua- tion of biofilm formation potential by bacteria, J Microbiol Meth., 68, 605–612, 2007.

SHAHEEN, R. et al. Persistence strategies of Baci- llus cereus spores isolated from dairy silo tanks, Food Microbiol., 27, 347-355, 2010.

"FAN9, H.; CHAN, K. and XU L. Quantification of bacterial adhesion forces using atomic force mi- croscopy (AFM), J Microbiol Meth., 40, 89–97, 2000."

B0YD R. et al. Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion, Langmuir., 18, 2343–2346, 2002.

PERNI, S. et al. Biofilm development by Listeria innocua in turbulent flow regimes, Food Control., 17, 875–883, 2006.

GARCÍA-ALMENDÁREZ, B. et al. Effect of Lacto- coccus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms, Food Control., 19, 670–680, 2008.

"LIU, W. et al. Development and use of a micro- manipulation techni¢ue for measuring the force re¢uired to disrupt and remove fouling deposits, Food Bioprod Process, 80; 286–291, 2002."

AL-ADHAM, I.S.I. et al. Microemulsions are highly effective anti- biofilm agents, Appl Microbiol., 36, 97–100, 2003.

BIRKS, S. 0zone technology gets a clean break, Food Manuf., 78, 63-64, 2003.

SIMÕES, M., SIMÕES, L. and VIEIRAB, M. A review of current and emergent biofilm control strategies, Food Sci Technol., 43, 573–583, 2010.

0KULL, D. and LAB0RDE, L. Activity of electrolyzed oxidizing water against Penicilium expansum on suspension and on wounded apples, J Food Sci., 69, 23–27, 2004.

0ZER, N. and DEMIRCI, A. Electrolyzed oxidizing water treatment for decontamination of raw salmon inoculated with Escherichia coli 0157:H7 and Listeria monocytogenes Scott A and response surface modeling, J Food Eng., 72, 234–241, 2006.

RUSSELL, S. The effect of electrolyzed oxida- tive water applied using electrostatic spraying on pathogenic and indicator bacteria on the surface of eggs, Poultry Sci., 82, 158–162, 2003.

BISH0P, P. Biofilm structure and kinetics, Water Sci Technol., 36, 287-294, 1997.

ZHANG T. and BISH0P, P. Structure, activity and composition of biofilm, Water Sci Technol., 29, 335-344, 1994.

DAVEY, M. and 0T00LE, G. Microbial biofilms: from ecology to molecular genetics, Microbiol Mol Biol R., 64, 847-867, 2000.

SERRA, G. P. Estudio del Biofilm: Formación y Consecuencias. Escola de Prevenció I Seguretat Integral, 2003. Available: http://www.adiveter.com/ ftp/articles/A1070308.pdf [citado 1 de Noviembre de 2010]

"WIRTANEN, G.; HUSMARK, U. and MATILLA- SANDH0LM, T. Microbial evaluation of the biotransfer potential from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food processing systems, J Food Protect., 59, 727-33, 1996."

"ZHAN9, 9. Aerosol Studies with Listeria innocua and Listeria monocytogenes, J Food Protect., 70; 1857–1865, 2007."

BANSAL, B. and CHEN, X. A critical review of milk fouling in heat exchangers, Compr Rev Food Sci Food Saf., 5, 27-47, 2006.

FR0MM, H. and B00R, K. Characterization of pasteurized fluid milk shelf-life attributes, J Food Sci., 69, 207–214, 2004.

SALUSTIAN0, V. Contamination of milk with Bacillus cereus by post-pasteurization surface exposure as evaluated by automated ribotyping, Food Control., 20, 439–442, 2009.

Y00, J.-A., HARDIN, M. and CHEN, X. The in- fluence of milk composition on the growth of Bacillus sterothermophilus, J Food Eng., 77, 96-102, 2006.

PASCUAL, A. et al. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities, Trends Food Sci Tech., 18, S29-S35, 2007.

9UZEL-SEYDIM, Z., GREENE, A. and SEYDIM, A. Use of ozone in the food industry, Lebensm Wiss Technol., 37, 453–460, 2004.

HSU, S. Effects of flow rate, temperature and salt concentration on chemical and physical proper- ties of electrolyzed oxidizing water, J Food Eng., 66, 171–176, 2005.

"HUANG, Yu et al. Application of elecrolyzed water in the food industry. 2008. Food Control 19(4); 329–345"

CARPENTIER, B. and CHASSAING, D. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry pre- mises, Int J Food Microbiol., 97, 111–122, 2004.

AYEBAH, B. and HUNG, Y.-C. Electrolyzed water and its corrosiveness on various surface mate- rials commonly found in food processing facili- ties, J Food Process Eng., 28, 247–264, 2005.

WALKER, S. CIP cleaning of a pipeline milking system using electrolyzed oxidizing water, Int J Dairy Technol., 58, 65–73, 2005.

"CARVAJAL, L.; G0MEZ, A. y 0CH0A S. Hydraulic flushing modeling in pipes to control of biofilm growth, Dyna, 74, 63-72, 2007."

M0RETR0, T. et al. Biofilm formation and the presence of the intercellularadhesion locus ica among Staphylococci from food and food pro- cessing environments, Appl Environ Microb., 69, 5648–5655, 2003.

FUSTER-VALLS, N. et al. Effect of different en- vironmental conditions on the bacteria survival on stainless steel surfaces, Food Control., 19, 308–314, 2008.

GUPTA, S. et al. 0utbreak of Salmonella Braende- rup infections associated with Roma tomatoes, nor theastern United States: A useful method for subtyping exposures in field investigations, Epidemiol Infect., 135, 1165–1173, 2007.

RELLER, M. et al. A large multiple-restaurant outbreak of infection with Shigella flexneri sero- type 2a traced to tomatoes, Clin Infect Dis., 42, 163–169, 2006.

J0HNST0N, L. et al. A field study of the micro- biological ¢uality of fresh produce of domestic and Mexican origin, Int J Food Microbiol., 112, 83–95, 2006.

RAYNER, J., VEEH, R. and FL00D, J. Prevalence of microbial biofilms on selected fresh produce and household surfaces, Int J Food Microbiol., 95, 29–39, 2004.

R0MAN0VA, N. et al. Rapid methods to assess sanitizing efficacy of benzalkonium chloride to Listeria monocytogenes biofilms, J Microbiol Meth., 71, 231–237, 2007.

VELÁZQUEZ, L. et al. Evaluation of chlorine, ben- zalkonium chloride and lactic acid as sanitizers for reducing Escherichia coli0157:H7 and Yersinia enterocolitica on fresh vegetables, Food Control., 20, 262–268, 2009.

KIM, D. and DAY, D. A biocidal combination capable of sanitizing raw chiken skin, Food Control., 18, 1272–1276, 2007.

CHEN, J., R0SSMAN, M. and PAWARD, D. Atta- chment of enterohemorrhagic Escherichia coli to the surface of beef and a culture medium, Food Sci Technol., 40, 249–254, 2007.

SEWARD, S. Sanitary design of ready to eat meat and poultry processing e¢uipment and facilities, Trends Food Sci Tech., 18, S108-S111, 2007.

VANEGAS, M. et al. Detection of Listeria Monocyto- genes in raw whole milk for human consumption in Colombia by real-time PCR, Food Control., 20, 430–432, 2009.

Cómo citar
Navia, D. P., Villada Castillo, H. S., & Mosquera Sanchez, S. A. (2010). Las biopelículas en la industria de alimentos. Biotecnología En El Sector Agropecuario Y Agroindustrial, 8(2), 118–128. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/740
Publicado
2010-12-01
Sección
Artículos de Revisiòn
QR Code

Algunos artículos similares: