Estabilidad durante el almacenamiento de polvo de coco fortificado con compuestos activos

  • Juan Carlos Lucas Aguirre Universidad del Quindio
  • German Antonio Giraldo Giraldo Universidad del Quindio
  • Misael Cortés Rodríguez Universidad Nacional de Colombia
Palabras clave: Cocos nucifera L.; Vida util; Vitaminas C; D3 y E; Calcio; Antioxidantes

Resumen

El consumidor moderno exige cada día alimentos con mayor contenido de nutrientes y compuestos funcionalmente activos (CFA) que favorezcan su salud; sin embargo, muchos de estos son afectados durante su procesamiento y almacenamiento. El objetivo de la investigación fue evaluar la estabilidad de los atributos de calidad del polvo de coco fortificado con Ca y vitaminas C, D3 y E (PC+CFA) obtenido por secado por aspersión, durante el almacenamiento. Las condiciones de almacenamiento evaluadas fueron: temperatura (15, 25 y 35°C), tiempos (0, 30, 60, 90, 120, 150 y 180 días) y empacado (presión atmosférica y N2), y las variables dependientes: humedad (Xw), aw, solubilidad (S), color, retención de calcio y vitaminas C, D3, E, fenoles totales, actividad antioxidante (métodos ABTS y DPPH), índice de peróxido (IP) y tamaño de partícula (D10, D50 y D90). En general, las variables independientes evaluadas afectan los atributos de calidad del PC+CFA, siendo los más críticos la aglomeración del producto y la retención de vitaminas y antioxidantes. La mejor condición de almacenamiento fue temperatura 15°C y empacado con N2, donde la calidad del PC+CFA a los 180 días fue Xw: 3,0±0,1%; aw: 0,342±0,009; L*: 78,0±0,0; a*: 1,4±0,1; b*: 8,6±0,1; S: 51,5±2,3%; IP: 0,2±0,2 meqH2O2/kg grasa; R-VC: 62,6±5,7%; R-VD3: 51,0±1,0%; R-VE: 57,2±3,2%; R-Ca: 98,9%; R-FT: 50,9±4,8%; R-DPPH: 91,9±1,8%; R-ABTS: 42,1±2,2%.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Juan Carlos Lucas Aguirre, Universidad del Quindio

Facultad de Ciencias Agroindustriales, Programa de Ingeniería de Alimentos, Grupo de Investigacion Procesos Agroindustriales (PAI). Doctor en Ciencias Agrarias.

German Antonio Giraldo Giraldo, Universidad del Quindio

Facultad de Ciencias Agroindustriales, Programa de Ingeniería de Alimentos, Grupo de Investigacion Procesos Agroindustriales (PAI). Doctor en Ingeniería de Alimentos.

Misael Cortés Rodríguez, Universidad Nacional de Colombia

Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Grupo de Investigación de Alimentos Funcionales (GAF). Doctor en Ingeniería de Alimentos.

Referencias

SIRIPHANICH, J. et al. Coconut (Cocos nucifera L.). In: Yahia, E. (Ed.). Postharvest- Biology and Technology of Tropical and Subtropical Fruits. Cocona to Mango. Cambridge (UK): Woodhead Publishing in Food Science Technology and Nutrition,2011, p. 8-33.

JENA, S. and DAS, H. Modeling of particle size distribution of sonicated coconut milk emulsion: Effect of emulsifiers and sonication time. Food Research International, 39, 2006, p. 606–611.

JENA, S. and DAS, H. Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108, 2012, p. 135–142.

LABUZA, T.P. and ALTUNAKAR, B. Water activity in foods: Fundamentals and applications. Ames (USA): IFT Press/Blackwell Publishing, 2007.

HENRÍQUEZ, C. et al. Storage stability test of apple peel powder using two packaging materials: High-density polyethylene and metalized films of high barrier. Industrial Crops and Products, 45, 2013, p. 121–127.

LIU, F. et al. Changes of tomato powder qualities during storage. Powder Technology, 204, 2010, p. 159–166.

LABUSCHAGNE, P. Impact of wall material physicochemical characteristics on the stability of encapsulated

phytochemicals: A review. Food Research International, 107, 2018, p. 227–247.

CHÁVEZ-SERVÍN, J.L. et al. Analysis of vitamins A, E and C, iron and selenium contents in infant milk-based powdered formula during full shelflife. Food Chemistry, 107, 2008, p. 1187–1197.

BABU, K.S. et al. Influence of protein content and storage temperature on the particle morphology

and flowability characteristics of milk protein concentrate powders. Journal of Dairy Science, 101(8), 2018, p. 7013-7026.

MERCAN, E., SERT, D. and AKIN, N. Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT Food Science and Technology, 97, 2018, p. 279-288.

ISLAM-SHISHIR, M.R. et al. Effect of packaging materials and storage temperature on the retention of physicochemical properties of vacuum packed pink guava powder. Food Packaging and Shelf Life, 12, 2017, p. 83–90.

ZOTARELLI, M.F. et al. Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 2017, p. 447–454.

RUIZ-RUIZ, M.P., MISAEL, C.R. y GIL, J.H. Estabilidad del polvo de aguacate adicionado con componentes activos durante el almacenamiento. Revista Biotecnología en el Sector Agropecuario y Agroindustrial, Edición especial 15(2), 2017, p. 42-51.

SALAZAR-ÁLZATE, B.C., CORTÉS-RODRÍGUEZ, M. and MONTOYA-CAMPUZANO, O.I. The impact of storage conditions on the stability of sugarcane powder biofortified with kefir grains. Revista Facultad Nacional de Agronomía, 68(2), 2015, p. 7703-7712.

HERNÁNDEZ-SANDOVAL, G.R., CORTÉSRODRÍGUEZ, M. and CIRO-VELÁSQUEZ, H.J. Effect of storage conditions on quality of a functional powder of cape gooseberry obtained by spray drying. Revista U.D.C.A Actualidad & Divulgación Científica, 17(1), 2014, p. 139-149.

ARAUJO-DÍAZA, B. et al. Evaluation of the physical properties and conservation of the antioxidants

content, employing inulin and maltodextrin in the spray drying of blueberry juice.Carbohydrate Polymers, 167, 2017, 317–325.

LUCAS-AGUIRRE, J.C., GIRALDO- GIRALDO, G.A. and CORTÉS-RODRÍGUEZ, M. Effect of the Spray Drying Process on the Quality of Coconut Powder Fortified with Calcium and Vitamins C, D3 and E. Advance Journal of Food Science and Technology, 16(SPL), 2018, p. 102-124.

A.O.A.C. INTERNATIONAL. Official methods of analysis of AOAC International. 20 ed. Rockville (USA): AOAC international, 2006.

LUCAS-AGUIRRE, J.C., TOBÓN-CASTRILLÓN,C. and CORTÉS-RODRÍGUEZ. M. Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Advance Journal of Food Science and Technology,14(3), 2018, p. 77-92.

ESTRADA-MESA, E.M. Optimización del proceso de secado por aspersión para la obtención de guacamole en polvo [Tesis Maestría en Ciencia y Tecnología de Alimentos]. Medellín (Colombia): Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, 2016, p. 180.

ZORIĆ, Z. et al. Effect of storage conditions on phenolic content and antioxidant capacity of spray dried sour cherry powder. LWT Food Science and Technology, 79, 2017, p. 251-259.

SRIDHAR, K. and LINTON-CHARLES, A. In vitro antioxidant activity of Kyoho grape extracts in DPPH* and ABTS* assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 2018, p. 41-49.

CASAGRANDE, M. et al. Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: In vitro antioxidant activity, antimicrobial potential, and phenolic compound quantificatión. Industrial Crops & Products, 125, 2018, p. 207–219.

SILVA, M.A. et al. Vitamin C evaluation in foods for infants and young children by a rapid and accurate

analytical method. Food Chemistry, 275, 2018, p. 83-90.

VÉSTIA, J. et al. Predicting calcium in grape must and base wine by FT-NIR spectroscopy. Food Chemistry, 276, 2019, p. 71-76.

FITZPATRICK, J.J. et al. Caking behaviour of food powder binary mixes containing sticky and non-sticky powders. Journal of Food Engineering,204, 2017, p. 73-79.

MUZAFFAR, K. and KUMAR, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 2016, p. 322–327.

ZHENG, Y. and LI, Y. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chemistry, 257, 2018, p. 135–142

SANTANA, A.A. et al. Spray drying of babassu coconut milk using different carrier agents. Drying Technology, 35(1), 2017, p. 76-87.

MERCAN, E., SERTB, D. and AKIN, N. Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT - Food Science and Technology, 97, 2018, p. 279–288.

CONESA, A. et al. Changes in the content of chlorophylls and carotenoids in the rind of Fino 49 lemons during maturation and their relationship with parameters from the CIELAB color space. Scientia Horticulturae, 243, 2019, p. 252–260.

MAHMOODANIA, F. et al. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage.Food Chemistry, 261, 2018, p. 149–156.

HYMAVATHI, T.V. and KHADER, V. Carotene, ascorbic acid and sugar content of vacuum dehydrated ripe mango powders stored in flexible packaging material. Journal of Food Composition and Analysos, 18, 2005, p. 181–192.

UDOMKUN, P. et al. Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chemistry, 196, 2016, p. 712–719.

MORAGA, G. et al. Effect of relative humidity and storage time on the bioactive compounds and functional

properties of grapefruit powder. Journal of Food Engineering, 112, 2012, p. 191–199.

MATUMOTO-PINTRO, P.T. et al. Effects of storage time and temperature on lipid oxidation of egg powders enriched with natural antioxidants. Food Chemistry, 228, 2017, p. 463–468.

FRIAS, J., PEÑAS, E. and VIDAL-VALVERDE, C. Changes in vitamin content of powder enteral formulas as a consequence of storage. Food Chemistry, 115, 2009, p. 1411–1416.

ROMERO-BRAQUEHAIS, F. Estabilidad de vitaminas, vida comercial y bioaccesibilidad de folatos .hierro en fórmulas infantiles de continuación y crecimiento [Ph.D Tesis]. Murcia (España): Universidad de Murcia, Facultad de Veterinaria y Ciencia y Tecnología de los alimentos, 2008, 320 p.

ROCHA-PARRA, D.F. et al. Influence of storage conditions on phenolic compounds stability, antioxidant capacity and colour of freeze-dried encapsulated red wine. LWT - Food Science and Technology, 70, 2016, p. 162-170.

DAZA, L.D. et al. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and bioproducts processing, 97, 2016, p. 20–29.

FOERSTER, M. et al. Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan. Food Hydrocolloids, 70, 2017, p. 163-180.

DI GIORGIO, L., SALGADO, P.R. and MAURI, A.N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 87, 2019, p. 891–901.

ENCINA, C. et al. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chemistry, 263, 2018, p. 283–291.

SHAMAEI, S. et al. Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 39, 2017, p. 101–112.

PETIT, J. et al. Storage-induced caking of cocoa powder. Journal of Food Engineering, 199, 2017, p. 42-53.

Cómo citar
Lucas Aguirre, J. C., Giraldo Giraldo, G. A., & Cortés Rodríguez, M. (2019). Estabilidad durante el almacenamiento de polvo de coco fortificado con compuestos activos. Biotecnología En El Sector Agropecuario Y Agroindustrial, 17(2), 66-76. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1254
Publicado
2019-07-01
Sección
Artículos de Investigaciòn