Desarrollo y comparación de dos métodos validados para determinar cadmio y arsénico en arroz colombiano mediante ICP-MS e ICP-OES

  • Yeni Rodríguez Giraldo Agrosavia
  • Estefania Rodriguez Sánchez Corporación Colombiana de Investigación Agropecuaria-Agrosavia
  • Edwin Alfredo Cifuentes Muñoz
  • Yuri Martínez Hernandez
  • María Angélica Pichimata Sanabria
Palabras clave: Metales pesados, Validación, Digestión ácida asistida por microondas, Límites de cuantificación, Alimentos

Resumen

Algunos metales son esenciales para la dieta, como el hierro (Fe), el cobre (Cu), el manganeso (Mn) y el zinc (Zn). Sin embargo, hay metales pesados que no son biodegradables, por lo que no son esenciales para el metabolismo ya que no cumplen un papel fisiológico en los seres humanos ni en las plantas. Por ello, se convierten en un factor adverso para la salud por sus capacidades acumulativas, como el cadmio (Cd), el cromo (Cr), el plomo (Pb), el arsénico (As) y el mercurio (Hg). Este estudio tuvo como objetivo desarrollar y comparar dos métodos para determinar el contenido de Cd y As en granos de arroz (Oryza sativa L.). Las muestras se sometieron a digestión ácida asistida por microondas con HNO3, y H2O2 [2:1] ya que este método es útil para preparar muestras con presencia de materia orgánica puesto que minimiza la pérdida de analitos y la contaminación de la muestra. Posteriormente, se analizaron mediante espectrometría de masas con plasma de acoplamiento inductivo cuadrupolar (ICP-MS) equipada con una célula de colisión/reacción y mediante espectrometría de emisión óptica con plasma de acoplamiento inductivo (ICP-OES). El rendimiento del método propuesto se evaluó según los parámetros de selectividad, sensibilidad, rango lineal, límites de detección y cuantificación, precisión, precisión intermedia y reproducibilidad. Los resultados mostraron que el método de digestión fue satisfactorio para la preparación de la muestra y que la técnica ICP-MS obtuvo límites de cuantificación más bajos en comparación con ICP-OES. Sin embargo, debido a las concentraciones cuantificadas, los resultados indicaron que ambos métodos son adecuados para determinar Cd y As en arroz, considerando los límites máximos permitidos en diferentes tipos de arroz regulados en el Codex Alimentarius y la Unión Europea

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Química analítica

Referencias bibliográficas

AL-NAIMI, MAHA; AL-GHOUTI, MOHAMMAD. Effects of Soaking, Acidity and Temperature on Cadmium and Lead Removal from Rice. Food Chemistry, v. 310, 2019, 125591. https://doi.org/10.1016/j.foodchem.2019.125591

ASTOLFI, MARIA-LUISA; MARCONI, ELISABETTA; PROTANO, CARMELA; VITALI, MATTEO; SCHIAVI, ELISA; MASTROMARINO, PAOLA; CANEPARI, SILVIA. Optimization and Validation of a Fast Digestion Method for the Determination of Major and Trace Elements in Breast Milk by ICP-MS. Analytica Chimica Acta, v. 1040, 2018, p. 49–62. https://doi.org/10.1016/j.aca.2018.07.037

BARI, MD-AZIZUL; AKTHER, MST-SALMA; REZA, MD-ABU; KABIR, AHMAD-HUMAYAN-. Cadmium Tolerance Is Associated with the Root-Driven Coordination of Cadmium Sequestration, Iron Regulation, and ROS Scavenging in Rice. Plant Physiology and Biochemistry, v. 136, 2019, p. 22–33. https://doi.org/10.1016/j.plaphy.2019.01.007

BASNET, PRIYANKA; AMARASIRIWARDENA, DULASIRI; WU, FENGCHANG; FU, ZHIYOU; ZHANG, TAO. Elemental Bioimaging of Tissue Level Trace Metal Distributions in Rice Seeds (Oryza Sativa L.) from a Mining Area in China. Environmental pollution, v. 195, 2014, p. 148–156. http://dx.doi.org/10.1016/j.envpol.2014.08.017

BRIFFA, JESSICA; SINAGRA, EMMANUEL; BLUNDELL, RENALD. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon, v. 6, n. 9, 2020, e04691. http://dx.doi.org/10.1016/j.heliyon.2020.e04691

CAO, YINI; MA, CHUANXIN; YU, HAO; TAN, QIAN; DHANKHER, OM-PARKASH; WHITE, JASON; XING, BAOSHAN. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation. Journal of Hazardous Materials, v. 443, Part B, 2023, 130283.https://doi.org/10.1016/j.jhazmat.2022.130283.

CLEMENS, STEPHAN; AARTS, MARK; THOMINE, SÉBASTIEN; VERBRUGGEN, NATHALIE. Plant Science: The Key to Preventing Slow Cadmium Poisoning. Trends in Plant Science, v. 18, n. 2, 2013, p. 92–99.https://doi.org/10.1016/j.tplants.2012.08.003

DA SILVA, IAGO; LAVORANTE, ANDRÉ; PAIM, ANA P.S.; DA SILVA, MARIA J. Microwave-Assisted Digestion Employing Diluted Nitric Acid for Mineral Determination in Rice by ICP OES. Food Chemistry, 319, 2020, 126435.https://doi.org/10.1016/j.foodchem.2020.126435

DRAVA, GIULIANA; VINCENZO MINGANTI. Influence of an Internal Standard in Axial ICP OES Analysis of Trace Elements in Plant Materials. Journal of Analytical Atomic Spectrometry, v. 35, n. 2, 2020. p. 301–306. https://doi.org/10.1039/c9ja00372j

MAGNUSSON, B.; ÖRNEMARK, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. 2 ed, 2014, ISBN 978-91-87461-59-0

FAKHAR, ALI; GUL, BUSHRA; GURMANI, ALI-RAZA; KHAN, SHAH-MASAUD; ALI, SHAFAQAT; SULTAN, TARIQ; CHAUDHARY, HASSAN-JAVED; RAFIQUE, MAZHAR; RIZWAN, MUHAMMAD. Heavy Metal Remediation and Resistance Mechanism of Aeromonas, Bacillus, and Pseudomonas: A Review. Critical Reviews in Environmental Science and Technology, v. 52, n. 11, 2022, p. 1868–1914.https://doi.org/10.1080/10643389.2020.1863112

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS AND WORLD HEALTH ORGANIZATION (FAO and WHO). Codex Alimentarius, Rome, 2019. https://bit.ly/3bKpEEE

GALLEGO, SUSANA M.; PENA, LILIANA B.; BARCIA, ROBERTO A.; AZPILICUETA, CLAUDIA E.; IANNONE, MARÍA F.; ROSALES, ELIANA P.; ZAWOZNIK, MYRIAM S.; GROPPA, MARÍA D.; BENAVIDES, MARÍA P. Unravelling Cadmium Toxicity and Tolerance in Plants: Insight into Regulatory Mechanisms. Environmental and Experimental Botany, v. 83, 2012, p. 33–46.http://dx.doi.org/10.1016/j.envexpbot.2012.04.006

GONÇALVES, DANIEL A.; DE SOUZA, IGOR-DOMINGOS; GOMES-ROSA, ANA-CARLA; PÁDUA-MELO, ELAINE-SILVA; GONCALVES, ALEM-MAR; DE OLIVEIRA, LINCOLN-CARLOS; DO NASCIMENTO, VALTER. Multi-Wavelength Calibration: Determination of Trace Toxic Elements in Medicine Plants by ICP OES. Microchemical Journal, v. 146, 2019, p. 381–386.https://doi.org/10.1016/j.microc.2019.01.021

HERRERO-FERNÁNDEZ, ZAHILY; ESTEVEZ-ÁLVAREZ, JUAN-REINALDO; MONTERO-ÁLVAREZ, ALFREDO; MUÑIZ-UGARTE, OLEGARIO; PUPO-GONZÁLEZ, IVÁN; RODRÍGUEZ-GONZÁLEZ, MAYDEL; DOS SANTOS-JÚNIOR, JOSÉ-ARAÚJO; CAVALCANTI-FREIRE-BEZERRA, MARIANA-BRAYNER; DOS SANTOS-JUNIOR, OTAVIO-PEREIRAL. Metal Contaminants in Rice from Cuba Analyzed by ICP-MS, ICP-AES and CVAAS. Food Additives and Contaminants: Part B Surveillance, v. 14, n. 1, 2021, p. 59–65.https://doi.org/10.1080/19393210.2020.1870576

INSTITUTO COLOMBIANO DE NORMAS TECNICAS Y CERTIFICACIÓN (ICONTEC). GTC-ISO-IEC 99. Vocabulario Internacional de Metrología. Conceptos Fundamentales, Generales y Términos Asociados (VIM). Bogotá (Colombia): v. 48, 2019.

LEE, JIAN; PARK, YE-SEUL; LEE, HWA-JEONG; KOO, YONG-EUI. Microwave-Assisted Digestion Method Using Diluted Nitric Acid and Hydrogen Peroxide for the Determination of Major and Minor Elements in Milk Samples by ICP-OES and ICP-MS. Food Chemistry, v. 373, 2022,131483.https://doi.org/10.1016/j.foodchem.2021.131483

MEERMANN, BJÖRN; NISCHWITZ, VOLKER. ICP-MS for the Analysis at the Nanoscale-a Tutorial Review. Journal of Analytical Atomic Spectrometry, v. 33, n. 9, 2018, p. 1432–1468. https://doi.org/10.1039/c8ja00037a

MUHAMMAD, ZAHIR; ABDUL, MAJEED; REHMANULLAH; NAILA, INAYAT; SAIRA, SIYAR. Effect of Heavy Metal Stress on Growth and Yields of Crop Plants: An Overview. In Faisal, M.; Saquib, Q.; Alatar, A.A.; Al-Khedhairy, A.A; Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. United States of America: Springer, Cham, 2020, 451p. https://doi.org/10.1007/978-3-030-45975-8_4

NARUKAWA, T.; SHIKINO, O.; CHIBA, K. Application of Neon as a Collision Gas-a Cell Gas Index for Collision/Reaction Cell-ICP-MS Determination. Journal of Analytical Atomic Spectrometry, v. 35, n. 10, 2020, p. 2142–47. https://doi.org/10.1039/d0ja00176g

ONDŘEJ, ZVĚŘINA; MONIKA, VYCHYTILOVÁ; JAQUELINE, RIEGER; WALTER, GOESSLER. Fast and Simultaneous Determination of Zinc and Iron Using HR-CS GF-AAS in Vegetables and Plant Material. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 201, 2023, 106616.http://dx.doi.org/10.1016/j.sab.2023.106616

RAI, PRABHAT-KUMAR; LEE, SANG-SOO; ZHANG, MING; TSANG, YIU-FAI; KIM, KI-HYUNL. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environment International, v. 125, 2019, p. 365–385.https://doi.org/10.1016/j.envint.2019.01.067

RAPOSO, FRANCISCO. Evaluation of Analytical Calibration Based on Least-Squares Linear Regression for Instrumental Techniques: A Tutorial Review. TrAC - Trends in Analytical Chemistry, v. 77, 2016, p. 167–185. http://dx.doi.org/10.1016/j.trac.2015.12.006

RAQUEL, SERRANO; GRINDLAY, GUILLERMO; GRAS, LUIS; MORA, JUAN. Insight into the Origin of Carbon Matrix Effects on the Emission Signal of Atomic Lines in Inductively Coupled Plasma Optical Emission Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 177, 2021,106070. http://dx.doi.org/10.1016/j.sab.2021.106070

ROA-ACOSTA, DIEGO-FERNANDO; HOYOS-CONCHA, JOSÉ-LUIS; BRAVO-GOMEZ, JESÚS-EDUARDO. Hydrolysis Monitoring of Quinoa, Soy and Rice Proteins by Using Spectroscopy FT-IR Technique. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 20, n. 2, 2022, p. 76-86.https://doi.org/10.18684/rbsaa.v20.n2.2022.1941

RODRÍGUEZ-GIRALDO, YENI; RODRIGUEZ-SÁNCHEZ, ESTEFANIA; TORRES, LUIS-GABRIEL; MONTENEGRO, ANDREA C.; PICHIMATA, MARÍA-ANGÉLICA. Development of Validation Methods to Determine Cadmium in Cocoa Almond from the Beans by ICP-MS and ICP-OES. Talanta Open, v. 5, 2022, 100078. https://doi.org/10.1016/j.talo.2021.100078

SANDEEP, G.; VIJAYALATHA, K.R.; ANITHA, T. Heavy Metals and Its Impact in Vegetable Crops. International Journal of Chemical Studies, v. 7, n. 1, 2019, p. 1612–1621.

SEN, SAIKAT; CHAKRABORTY, RAJA; KALITA, PRATAP. Rice - Not Just a Staple Food: A Comprehensive Review on Its Phytochemicals and Therapeutic Potential. Trends in Food Science and Technology, v. 97, 2020, p. 265–85.https://doi.org/10.1016/j.tifs.2020.01.022

SPANU, ANTONINO; VALENTE, MASSIMILIANO; LANGASCO, ILARIA; LEARDI, RICCARDO; ORLANDONI, ANNA-MARIA; CIULU, MARCO; DEROMA, MARIO-ANTONELLO; SPANO, NADIA; BARRACU, FRANCESCO; PILO, MARIA-I; SANNA, GAVINO. Effect of the Irrigation Method and Genotype on the Bioaccumulation of Toxic and Trace Elements in Rice. Science of the Total Environment, v. 748, 2020, 142484.https://doi.org/10.1016/j.scitotenv.2020.142484

SUGIYAMA, NAOKI. Attenuation of Doubly Charged Ion Interferences on Arsenic and Selenium by ICP-MS under Low Kinetic Energy Collision Cell Conditions with Hydrogen Cell Gas. Journal of Analytical Atomic Spectrometry, v. 36, n. 2, 2021, p. 294–302.https://doi.org/10.1039/D0JA00301H

TANASEA, ION-GH; POPAA, DANA-ELENA; UDRIŞTIOIU, GABRIELA-ELENA; BUNACIU, ANDREI A.; ABOUL‐ENEIN, HASSAN Y. Validation and Quality Control of an ICP‐MS Method for the Quantification and Discrimination of Trace Metals and Application in Paper Analysis: An Overview. Critical Reviews in Analytical Chemistry, v. 44, n. 4, 2014.https://doi.org/10.1080/10408347.2013.863141

TCHOUNWOU, PAUL B.; YEDJOU, CLEMENT G.; PATLOLLA, ANITA K.; SUTTON, DWAYNE J. Heavy Metal Toxicity and the Environment. In Luch, A;Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, v. 101. Springer, Basel, 2012, 564 p.https://doi.org/10.1007/978-3-7643-8340-4_6

TEJADA-TOBAR, CANDELARIA; PAZ-ASTUDILLO, ISABEL-CRISTINA; ACEVEDO-CORREA, DIOFANOR; ESPINOSA-FORTICH, MARÍA; LÓPEZ-BADEL, CRISTINA. Adsorción de Cromo (VI) y Mercurio (II) En Solución Utilizando Jacinto (Eichhornia Crassipes). Biotecnología en el Sector Agropecuario y Agroindustrial, v. 19, n. 1, 2021, p. 54–65. https://doi.org/10.18684/BSAA(19)54-65

THOMAS, JULIYA; ARCHANA, G. Differential Influence of Heavy Metals on Plant Growth Promoting Attributes of Beneficial Microbes and Their Ability to Promote Growth of Vigna Radiata (Mung Bean). Biocatalysis and Agricultural Biotechnology, v. 47, 2023, 102592.https://doi.org/10.1016/j.bcab.2022.102592

UNITED STATES OF AMERICA. AMERICAN SOCIETY FOR TESTING AND MATERIALS (AOAC INTERNATIONAL) Appendix F: Guidelines for Standard Method Performance Requirements. AOAC International and Official Method of Analysis, 2016, p.1–18.

WILSCHEFSKI, SCOTT C.; BAXTER, MATTHEW R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clinical Biochemist Reviews, v. 40, n. 3, 2019, p. 115–133. https://doi.org/10.33176/AACB-19-00024

WILTSCHE, HELMAR; WINKLER, MONIKA; TIRK, PAUL. Matrix Effects of Carbon and Bromine in Inductively Coupled Plasma Optical Emission Spectrometry. Journal of Analytical Atomic Spectrometry, v. 30, n. 10, 2015, p. 2223–2234.http://dx.doi.org/10.1039/C5JA00237K

ZAREI, SINA; KARBASSI, ABDOLREZA; SADRINASAB, MASOUD; SARANG, AMIN. Investigating Heavy Metal Pollution in Anzali Coastal Wetland Sediments : A Statistical Approach to Source Identification. Marine Pollution Bulletin, v. 194, Part B, 2023, 115376.https://doi.org/10.1016/j.marpolbul.2023.115376

Cómo citar
Rodríguez Giraldo, Y., Rodriguez Sánchez, E., Cifuentes Muñoz, E. A., Martínez Hernandez, Y., & Pichimata Sanabria, M. A. (2024). Desarrollo y comparación de dos métodos validados para determinar cadmio y arsénico en arroz colombiano mediante ICP-MS e ICP-OES. Biotecnología En El Sector Agropecuario Y Agroindustrial. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2345
Publicado
2024-03-04
Sección
Artículos de Investigaciòn

Datos de los fondos

QR Code