El problema de la hidrofilicidad en materiales plásticos derivados de almidón

  • Alcy Rene Ceron Universidad del Cauca
Palabras clave: Polímeros Biodegradables, Modificación Superficial, Absorción de Agua.


El almidón es un polisacárido natural renovable, económico y a partir del cual se pueden obtener fácilmente productos plásticos biodegradables. Sin embargo, los productos obtenidos a partir de almidón presentan bajas propiedades mecánicas y tienden a cambiar sus propiedades en presencia de agua. Para disminuir los problemas provocados por el agua en los productos plásticos derivados de almidón, causados por la alta hidrofilicidad de este polímero, se han planteado diversas estrategias tales como la modificación química del almidón, la asociación del almidón con otros polímeros menos hidrofílicos y la modificación superficial de los productos finales. En la presente revisión se presentan ejemplos de trabajos investigativos relacionados con cada una de las estrategias mencionadas, centrando la atención en la modificación superficial, que permite disminuir con efectividad la hidrofilicidad de los productos derivados de almidón sin afectar apreciablemente las características internas del material.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Alcy Rene Ceron, Universidad del Cauca
Químico. Grupo de investigación CYTBIA.


NACEUR BELGACEM, M. and GANDINI, A. eds. Monomers, polymers and composites from renewable resources. Oxford (United Kingdom): Elsevier Ltd, 2008, p. 1-3.

YOUNG, R. and LOVELL, P. Introduction to polymers. 3 ed. Boca Raton (USA): CRC Press, 2011, p. 3-4.

ROSATO, D. Plastics end use applications. New York (USA): Springer, 2011, p. 11-18.

GROSS, R. and KALRA, B. Biodegradable polymers for the environment. Science, 297 (5582), 2002, p. 803-807.

SATYANARAYANA, K. G., ARIZAGA, G. and WYPYCH, F. Biodegradable composites based on lignocellulosic fibers: an overview. Progress in Polymer Science, 34 (9), 2009, p. 982-1021.

EBNESAJJAD, S. ed. Handbook of biopolymers and biodegradable plastics: properties, processing and applications. Waltham (USA): Elsevier Inc., 2013, p. 109-128.

CHIELLINI, E. ed. Environmentally compatible food packaging. New York (USA): Woodhead Publishing Limited, 2008, p. 18-19.

SHARMA, S. and MUDHOO, A. eds. A handbook of applied biopolymer technology: synthesis, degradation and applications. Cambridge (United Kingdom): RSC Publishing, 2011, p. 332-364.

FAHLMAN, B. Materials chemistry. 2 ed. New York (USA): Springer, 2011, p. 393-395.

VIEIRA, M., da SILVA, M., dos SANTOS, L. and BEPPU, M. Natural-based plasticizers and biopolymer films: a review. European Polymer Journal, 47 (3), 2011, p. 254-263.

AHMED, J., TIWARI, B., IMAM, S. and RAO, M.A. eds. Starch-based polymeric materials and nanocomposites: chemistry, processing and applications. Boca Raton (USA): CRC Press, 2012, p. 1-4.

KALIA, S. and AVÉROUS, L. eds. Biopolymers: biomedical and environmental applications. Massachusetts (USA): Scrivener Publishing LLC, 2011, p. 81-95.

NAVIA, D., VILLADA, H. y AYALA, A. Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión. Biotecnología en el Sector Agropecuario y Agroindustrial, 9, 2011, p. 77-87.

AYADI, F. and DOLE, P. Stoichiometric interpretation of thermoplastic starch water sorption and relation to mechanical behavior. Carbohydrate Polymers, 84 (3), 2011, p. 872-880.

PERDOMO, J., COVA, A., SANDOVAL, A. J., GARCIA, L., LAREDO, E. and MÜLLER, A. J. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, 76 (2), 2009, p. 305-313.

BeMILLER, J. and WHISTLER, R. eds. Starch: chemistry and technology. 3 ed. New York (USA): Academic Press, 2009, p. 149, 173.

SMITH, R. ed. Biodegradable polymers for industrial applications.

Boca Raton (USA): CRC Press, 2005, p. 357-362.

WILLIAMS, P. ed. Renewable resources for functional polymers and biomaterials. Cambridge (United Kingdom): RSC Publising, 2011, p. 130-165.

JANSSEN, L. and MOSCICKI, L. eds. Thermoplastic starch: a green material for various industries. Weinheim (Germany): WILEY-VCH Verlag GmbH & Co, 2009, p. 3-16, 78.

WROLSTAD, R. Food carbohydrate chemistry. Oxford (United Kingdom): John Wiley & Sons, Inc., 2012, p. 107-131.

COVA, A., SANDOVAL, A., BALSAMO, V. and MÜLLER, A. The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers, 81 (3), 2010, p. 660-667.

COPELAND, L., BLAZEK, J., SALMAN, H. and TANG, M. Form and functionality of starch. Food Hydrocolloids, 23 (6), 2009, p. 1527-1534.

GODBILLOT, L., DOLE, P., JOLY, C., ROGÉ, B. and MATHLOUTHI, M. Analysis of water binding in starch plasticized films. Food Chemistry, 96 (3), 2006, p. 380-386.

LIU, P., XIE, F., LI, M., LIU, X., YU, L., HALLEY, P. and CHEN, L. Phase transitions of maize starches with different amylose contents in glycerol–water systems. Carbohydrate Polymers, 85 (1), 2011, p. 180-187.

KASAPIS, S., NORTON, I. and UBBINK, J. eds. Modern biopolymer science. San Diego (USA): Academic Press, 2009, 640 p.

BERTOLINI, A. Starches: characterization, properties and applications. New York (USA): CRC Press, 2010, p. 14, 106-122.

KAUR, B., ARIFFIN, F., BHAT, R. and KARIN, A. Progress in starch modification in the last decade. Food Hydrocolloids, 26 (2), 2012, p. 398-404.

FORNAL, J., SADOWSKA, J., BLASZCZAK, W., JELINSKI, T., STASIAK, M., MOLENDA, M. and HAJNOS, M. Influence of some chemical modifications on the characteristics of potato starch powders. Journal of Food Engineering, 108 (4), 2012, p. 515-522.

MOAD, G. Chemical modification of starch by reactive extrusion. Progress in Polymer Science, 36 (2), 2011, p. 218-237.

AVEROUS, L., MORO, L., DOLE, P. and FRINGANT, C. Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41 (11), 2000, p. 4157-4167.

AVEROUS, L., FAUCONNIER, N., MORO, L. and FRINGANT, C. Blends of thermoplastic starch and polyesteramide: processing and properties. Journal of Applied Polymer Science, 76 (7), 2000, p. 1117-1128.

GODBOLE, S., GOTE, S., LATKAR, M. and CHAKRABARTI, T. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresource Technology, 86 (1), 2003, p. 33-37.

AVEROUS, L. and POLLET, E. eds. Environmental silicate nano-biocomposites. London (United Kingdom): Springer, 2012, p. 13-39.

YU, L., DEAN, K., YUAN, Q., CHEN, L. and ZHANG, X. Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. Journal of Applied Polymer Science, 103 (2), 2007, p. 812-818.

BRANDELERO, R., YAMASHITA, F. and GROSSMANN, M. The effect of surfactant Tween 80 on the hydrophilicity, water vapor permeation, and the mechanical properties of cassava starch and poly(butylene adipate-coterephthalate) (PBAT) blend films. Carbohydrate Polymers, 82 (4), 2010, p. 1102-1109.

HUNEAULT, M. and LI, H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48 (1), 2007, p. 270-280.

WALIA, P., LAWTON, J. and SHOGREN, R. Mechanical properties of thermoplastic starch/poly(hydroxy ester ether) blends: effect of moisture during and after processing. Journal of Applied Polymer Science, 84 (1), 2002, p. 121-131.

ZHOU, J., ZHANG, J., MA, Y. and TONG, J. Surface photo-crosslinking of corn starch sheets. Carbohydrate Polymers, 74 (3), 2008, p. 405-410.

MORENT, R., De GEYTER, N., DESMET, T., DUBRUEL, P. and LEYS, C. Plasma surface modification of biodegradable polymers: a review. Plasma Processes and Polymers, 8 (3), 2011, p. 171-190.

BENGTSSON, M., KOCH, K. and GATENHOLM, P. Surface octanoylation of high-amylose potato starch films. Carbohydrate Polymers, 54 (1), 2003, p. 1-11.

CARVALHO, A., CURVELO, A. and GANDINI, A. Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride. Industrial Crops and Products, 21 (3), 2005, p. 331-336.

XU, Z., HUANG, X. and WAN, L. Surface engineering polymer membranes. Berlin (Germany): Springer-Verlag GmbH, 2009, p. 44-52.

BUTT, H. and KAPPL, M. Surface and interfacial forces. Weinheim (Germany): WILEY-VCH Verlag GmbH & Co., 2010, p. 135-136.

ZENG, J., JIAO, L., LI, Y., SRINIVASAN, M., LI, T. and WANG, Y. Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydrate Polymers, 83 (2), 2011, p. 762-768.

ZHOU, J., REN, L., TONG, J., XIE, L. and LIU, Z. Surface esterification of corn starch films: reaction with dodecenyl succinic anhydride. Carbohydrate Polymers, 78 (4), 2009, p. 888-893.

ANDRADE, C., SIMÃO, R., THIRÉ, R. and ACHETE, C. Surface modification of maize starch films by low-pressure glow 1-butene plasma. Carbohydrate Polymers, 61 (4), 2005, p. 407-413.

BASTOS, D., SANTOS, A., da SILVA, M. and SIMÃO, R. Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109 (8), 2009, p. 1089-1093.

HAN, Y., MANOLACH, S., DENES, F. and ROWELLl, R. Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity. Carbohydrate Polymers, 86 (2), 2011, p. 1031-1037.

Cómo citar
Ceron, A. R. (2019). El problema de la hidrofilicidad en materiales plásticos derivados de almidón. Biotecnología En El Sector Agropecuario Y Agroindustrial, 11(1), 21-48. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1225
Artículos de Investigaciòn