Micropropagación de Gynerium sagitatum Aubl. cvs "criolla,"costera" y "martinera"

Palabras clave: Caña Brava, Propagación, Multiplicación in vitro, Enraizamiento in vitro, ex vitro

Resumen

La Caña flecha (Gynerium sagitatum Aubl.) (Poaceae) es la fuente de fibra para las más famosas artesanías colombianas; sin embargo, no existen cultivos comerciales y las poblaciones naturales han disminuido, amenazando la actividad artesanal y los ecosistemas asociados. Con el fin de proveer un mecanismo que suministre plantas para el establecimiento de cultivos, la micropropagación de tres cultivares de caña flecha fue evaluada. Explantes de los cultivares “Criolla, “Martinera” y “Costera” fueron establecidos in vitro y multiplicados usando diferentes concentraciones de BAP, seguido por el enraizamiento in vitro en presencia de diferentes niveles de ANA y transferidos a condiciones ex vitro. Los tratamientos fueron distribuidos con un DCA, los datos analizados con ANOVA y los promedios separados con la prueba de Tukey. BAP incremento estadísticamente las tasas de multiplicación. ANA promovió la formación de raíces adventicias al tiempo que redujo la longitud de las raíces. Las plantas de los tres cultivares se adaptaron totalmente a las condiciones ex vitro, indicando el desarrollo de un eficiente protocolo de micropropagación para proveer grandes cantidades de plantas de alta calidad.  

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

REFERENCES

[1] USDA. United Estates Department of Agriculture. Gynerium sagittatum (Aubl.) P. Beauv. Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy). [online]. 2019. Disponible: https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=18116. [Cited 2 October 2019 ].

[2] KALLIOLA, R., PUHAKKA, M. and SALO, J. Intraspecific variation, and the distribution and ecology of Gynerium sagittatum (Poaceae) in the western Amazon. Flora, 186 3(4), 1992, p. 153 - 167. doi: 10.1016/S0367-2530(17)30531-5.

[3] HERNÁNDEZ MURILLO, J., ARAMENDIZ TATIS, H., AND CARDONA AYALA, C. Influencia del ácido indolbutírico sobre el enraizamiento de esquejes de caña flecha (Gynerium sagittatum Aubl.). Temas Agrarios, 10(1), 2005, p. 5-13. doi: https://doi.org/10.21897/rta.v10i1.626.

[4] GONZÁLEZ, O. Situación de dos métodos de siembra por estacas de caña flecha (Gynerium sagittatum Aubl.) de la variedad “Martinera” en la región de Montelibano - Córdoba. [Thesis. agronomic Engineering] Córdoba (Colombia): Universidad de Córdoba, faculty of agricultural sciences, 1997.

[5] BALLESTEROS, J. and GUARDO, T. Estudio preliminar de la propagación asexual de la caña flecha (Gynerium sagittatum Aubl.). [Thesis. agronomic Engineering] Córdoba (Colombia): Universidad de Córdoba, faculty of agricultural sciences, 1988.

[6] LÓPEZ, D. AND SUÁREZ, I. E. In vitro arrow cane (Gynerium sagitatum Aubl.) multiplication in double phase medium. Revista de Ciencias Agrícolas, 35 (2), 2018, p. 5 -13. doi: 10.22267/rcia.183502.86



[7] SUAREZ, I., ORTIZ, O. AND LOPEZ, C. Formación in vitro de rizomas en caña flecha (Gynerium sagitatum Aubl.) y recuperación de plantas. Temas Agrarios, 22(1), 2017, p. 11-20. doi: https://doi.org/10.21897/rta.v22i1.911

[8] LÓPEZ, C. Micropropagación de tres variedades de Caña flecha (Gynerium sagitatum Aubl.). [MSc. Thesis Biotechnology]. Córdoba (Colombia): Universidad de Córdoba, Faculty of Basic Sciences, 2017, 33 p.

[9] SUAREZ, I., PASTRANA, I. and RIVERA H. Biotecnología Aplicada a la Caña Flecha (Gyneriumsagitatum Aubl.). 1 ed. Monteria (Colombia): Editorial fund Universidad de Córdoba, Montería, 2013, 72 p. ISNB:978-958-46-0969-4.

[10] SUAREZ, I., ARAMENDIZ H. and PASTRANA, I. Micropropagación de Caña Flecha (Gynerium sagittatum Aubl.). Rev. Fac. Nac. Agron., Univ. Medellín - Antioquia, 62 (2), 2009, p. 5135 - 5143, ISSN: 0304-2847.

[11] PASTRANA, I. and SUÁREZ PADRON, I. Producción de plantas de caña flecha (Gynerium sagittatum) “Criolla” a través de micropropagación. Temas Agrarios, 14(2), 2009, p. 4-13. doi: https://doi.org/10.21897/rta.v14i2.671.

[12] Kane, M Micropropagation from pre-existing meristems, Trigiano, R. N., Gray, D. J. Eds. Plant Tissue Culture Concepts and Laboratory Excercises. 2 ed. London (United KImdom) - Boca Ratón CRC Press, (1996), 472 p. ISBN 9780849320293

[13] MURASHIGE, T. & SKOOG, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15(3), (1962), p. 473 - 497. doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

[14] JOO, S. J., YOON, A. R., KIM, Y. G., MOON, B. C., KOMAKECH, R. and KANG, Y. In vitro propagation of Trichosanthes kirilowii Maxim. through nodal segment shoot proliferation. In Vitro Cellular & Developmental Biology - Plant. 2019, p 1–8, doi: https://doi.org/10.1007/s11627-019-10010-w.

[15] SINGH, A. J. Efficient Micropropagation Protocol for Jatropha Curcas Using Liquid Culture Medium. Journal of crop science and biotechnology, Journal of Crop Science and Biotechnology, 21(1), 2018, p. 89-94. doi: https://doi.org/10.1007/s12892-017-0004-0.

[16] SAFARPOUR, M., SINNIAH, U. R., SUBRAMANIAM, S. and SWAMY, M. K. A novel technique for Musa acuminata Colla ‘Grand Naine’ (AAA) micropropagation through transverse sectioning of the shoot apex. In Vitro Cellular & Developmental Biology-Plant, 53 (3), 2017, p. 226-238. doi: https://doi.org/10.1007/s11627-017-9809-6.

[17] AGUILAR, J. and RODRÍGUEZ, J. Micropropagación y aclimatación de Maguey Pitzometl (Agave marmorata Roezl) en la Mixteca Poblana. Revista Colombiana de Biotecnología, 20(2), 2018, p. 124-131. doi: https://doi.org/10.15446/rev.colomb.biote.v20n2.77084.

[18] NUNES, S., SOUSA, D., PEREIRA, V. T., CORREIA, S., MARUM, L., SANTOS, C. and DIAS, M. C. Efficient protocol for in vitro mass micropropagation of slash pine. In Vitro Cellular & Developmental Biology-Plant, 54(2), 2018, p.175-183. doi: https://doi.org/10.1007/s11627-018-9891-4.

[19] PALIWAL, A., SHEKHAWAT, N. S. and DAGLA, H. R. Micropropagation of Glossonema varians (Stocks) Benth. ex Hook. f.—a rare Asclepiadeae of Indian Thar Desert. In Vitro Cellular & Developmental Biology-Plant, 54(6), 2018, p. 637-641. doi: https://doi.org/10.1007/s11627-018-9935-9.

[20] QUIROZ, K. A., BERRIOS, M., CARRASCO, B., RETAMALES, J. B., CALIGARI, P. and GARCÍA, R. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis). Biol. Res, 50(20), 2017, p. 1-11. doi: https://doi.org/10.1186/s40659-017-0125-8.

[21] SHEKHAWAT, M. S. and MANOKARI, M. In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiol Mol Biol Plants, 22(1), 2016, p. 131-142. doi: 10.1007/s12298-015-0335-x.

[22] YAVUZ, D. Ö. Optimization of regeneration conditions and in vitro propagation of Sideritis Stricta Boiss & Heldr. International journal of biological macromolecules, 90, 2016, p. 59-62. doi: https://doi.org/10.1016/j.ijbiomac.2015.10.064.

[23] OZDEMIR, F. A., YILDIRIM, M. U. and POURALI KAHRIZ, M. P. Efficient micropropagation of highly economic, medicinal and ornamental plant Lallemantia iberica (Bieb.) Fisch. and C.A. Mey. BioMed research international, 2014, p. 1-5. doi: http://dx.doi.org/10.1155/2014/476346.

[24] SUÁREZ, I. Biotecnología Vegetal Agrícola. Monteria (Cordoba): Grup of Pub - Universidad de Córdoba, 2005, p. 1-120.

[25] LÁZARO-CASTELLANOS, J. O., MATA-ROSAS, M., GONZÁLEZ, D., ARIAS, S. and REVERCHON, F. In vitro propagation of endangered Mammillaria genus (Cactaceae) species and genetic stability assessment using SSR markers. In Vitro Cellular & Developmental Biology-Plant, 54(5), 2018, p. 518-529. doi: https://doi.org/10.1007/s11627-018-9908-z.

[26] STEVENS, M. E. and PIJUT, P. M. Rapid in vitro shoot multiplication of the recalcitrant species Juglans nigra (L). In Vitro Cellular & Developmental Biology-Plant, 54(3), 2018, p. 309-317. doi: https://doi.org/10.1007/s11627-018-9892-3.

[27] SISUNANDAR., ALKHIKMAH., HUSIN, A., JULIANTO, T., YUNIATY, A., RIVAL, A. and ADKINS, S. W. Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of Kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. In Vitro Cellular & Developmental Biology-Plant, 54(5), 2018, p. 508-517. doi: https://doi.org/10.1007/s11627-018-9897-y.

[28] AMBROS, E. V., TOLUZAKOVA, S. Y., SHRAINER, L. S., TROFIMOVA, E. G. and NOVIKOVA, T. I. An innovative approach to ex vitro rooting and acclimatization of Fragaria× ananassa Duch. microshoots using а biogenic silica-and green-tea-catechin-based mechanocomposite. In Vitro Cellular & Developmental Biology-Plant, 54(4), 2018, p. 436-443. doi: https://doi.org/10.1007/s11627-018-9894-1.

[29] TEIXERIA, G. H., CUNHA, B.P. and SCHERWINSKI, P. J. Optimizing rooting and survival of oil palm (Elaeis guineensis) plantlets derived from somatic embryos. In Vitro Cellular & Developmental Biology-Plant, 51(1), 2015, p. 111-117. doi: https://doi.org/10.1007/s11627-015-9669-x.

[30] EL-HAWAZ, R., PARK, D., BRIDGES, W. C. and ADELBERG, J. Optimizing in vitro mineral nutrition and plant density increases greenhouse growth of Curcuma longa L. during acclimatization. Plant Cell, Tissue and Organ Culture (PCTOC), 126(1), 2016, p. 33-42. doi: https://doi.org/10.1007/s11240-016-0974-9.

[31] SHEKHAWAT, M. and MANOKARY, M. In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (couroupita guianensis aubl.): a multipurpose threatened species, Physiology and Molecular Biology Plants, 22(1), 2016, p. 131-142. doi: 10.1007/s12298-015-0335-x.

[32] LUCCHESINI, M., PACIFICI, S., MAGGINI, R., PARDOSSI, A. and SODI, A. M. A novel microfloating culture system for the in vitro rooting of Echinacea angustifolia DC: photosynthetic performance and production of caffeic acid derivatives. Plant Cell, Tissue and Organ Culture (PCTOC), 136(1), 2019, p. 123-132.


[33] LYNCH, J. P. Rightsizing root phenotypes for drought resistance. Journal of Experimental Botany, 69(13), 2018, p. 3279-3292. doi: https://doi.org/10.1093/jxb/ery048.

[34] PHILLIPS, G. C. and GARDA, M. Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology-Plant, 55(3), 2019, p. 242-257. doi: https://doi.org/10.1007/s11627-019-09983-5.

[35] KODYM, A. and LEEB, C. J. Back to the roots: protocol for the photoautotrophic micropropagation of medicinal Cannabis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(2), 2019, p. 399–402. doi: https://doi.org/10.1007/s11240-019-01635-1.

[36] TISARUM, R., SAMPHUMPHUNG, T., THEERAWITAYA, C., PROMMEE, W. and CHA-UM, S. In vitro photoautotrophic acclimatization, direct transplantation and ex vitro adaptation of rubber tree (Hevea brasiliensis). Plant Cell, Tissue and Organ Culture (PCTOC), 133(2), 2018, p. 215-223, doi: https://doi.org/10.1007/s11240-017-1374-5.

[37] KIM, S. H., PARK, S. J., CHO, K.H. and LEE, H.C. Effect of plant growth regulators and carbon source on the shoot regeneration and rooting of ‘Wonhwang’pear (Pyrus pyrifolia L.). Journal of Plant Biotechnology, 43(4), 2016, p. 486-491. doi: https://doi.org/10.5010/JPB.2016.43.4.486.

[38] SU, C., LIU, L., LIU, H., FERGUSON, B. J., ZOU, Y., ZHAO, Y. and LI, X. H2O regulates root system architecture by modulating the polar transport and redistribution of auxin. Journal of Plant Biology, 59(3), 2016, p. 260-270. doi: https://doi.org/10.1007/s12374-016-0052-1.

[39] HARTMANN, H., KESTER, D., DAVIES, F. and GENEVE, R. Hartmann and Kester's plant propagation: Principles and practices. 7th Ed, Saddle River (New Jersey): Pearson, (2002), 880 p. ISBN-13: 9780136792352



[40] MOTTE, H. and BEECKMAN, T. The evolution of root branching: increasing the level of plasticity. Journal of experimental botany, 70(3), 2019, p. 785-793. doi: https://doi.org/10.1093/jxb/ery409.

[41] XUAN, Y. H., KUMAR, V., ZHU, X. F., JE, B. I., KIM, C. M., HUANG, J. and HAN, C. D. IDD10 is Involved in the Interaction between NH 4+ and Auxin Signaling in Rice Roots. Journal of Plant Biology, 61(2), 2018, p. 72-79. doi: https://doi.org/10.1007/s12374-017-0423-2.

[42] PÉREZ, L. P., MONTESINOS, Y. P., OLMEDO, J. G., RODRIGUEZ, R. B., SÁNCHEZ, R. R., MONTENEGRO, O. N. and GÓMEZ-KOSKY, R. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). In Vitro Cellular & Developmental Biology-Plant, 52(2), (2016), p. 196-203. doi: https://doi.org/10.1007/s11627-015-9733-6.

[43] KUMARI, K., LAL, M. and SAXENA, S. Enhanced micropropagation and tiller formation in sugarcane through pretreatment of explants with thidiazuron (TDZ), 3 - Biotech, 7, 2017, p. 282. doi: https://doi.org/10.1007/s13205-017-0910-7.


[44] BUKHARI, N., SIDDIQUE, I. and PERVEEN, K. Preculturing effect of thidiazuron on in vitro shoot multiplication and micropropagation round in Capparis decidua (Forsk.) an important multipurpose plant, Acta Biol. Hung, 67 (3), 2016, p. 297-304. doi: 10.1556/018.67.2016.3.7.

[45] RODRÍGUEZ, M., CARRILLO, R., CHACÓN, M., HORMAZÁBAL, N., TAMPE, J. and TIGHE, R. Enraizamiento in vitro y ex vitro de microtallos de Ugni molinae Turcz., una especie nativa de Chile. Gayana Bot, 72(1), 2015, p. 14-20. doi:http://dx.doi.org/10.4067/S0717-66432015000100002.

[46] ADELBERG, J., NAYLOR-ADELBERG, J. and RAPAKA, V. Phenolic foam rooting matrices allows faster transfer and more rapid growth of Echinacea plants in greenhouse. In Vitro Cellular & Developmental Biology-Plant, 53(6), 2017, p. 546-552. doi: https://doi.org/10.1007/s11627-017-9843-4.


[47] GONÇALVES, S., MARTINS, N. and ROMANO, A. Physiological traits and oxidative stress markers during acclimatization of micropropagated plants from two endangered Plantago species: P. algarbiensis Samp. and P. almogravensis Franco. In Vitro Cellular & Developmental Biology-Plant, 53(3), 2017, p. 249-255. doi: https://doi.org/10.1007/s11627-017-9812-y.

[48] VALERO-ARACAMA, C., KANE, M. E., WILSON, S. B., VU, J. C., ANDERSON, J. and PHILMAN, N. L. Photosynthetic and carbohydrate status of easy-and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during in vitro culture and ex vitro acclimatization. In Vitro Cellular & Developmental Biology-Plant, 42(6), 2006, p. 572. doi: https://doi.org/10.1079/IVP2006822.

[49] OLIVEIRA, C.J., ELVER, V.C., MARQUES, P.M., SILVA, B. D. and WITT, S. C. Induced polyploidization increases 20-hydroxyecdysone content, in vitro photoautotrophic growth, and ex vitro biomass accumulation in Pfaffia glomerata (Spreng.) Pedersen. In Vitro Cellular & Developmental Biology-Plant, 52(1), 2016, p. 45-55. doi: https://doi.org/10.1007/s11627-016-9746-9.

[50] MIAO, Y., ZHU, Z., GUO, Q., YANG, X., LIU, L., SUN, Y. and WANG, C. Dynamic changes in carbohydrate metabolism and endogenous hormones during Tulipa edulis stolon development into a new bulb. Journal of Plant Biology, 59(2), 2016, p. 121-132. doi:https://doi.org/10.1007/s12374-016-0456-y.

[51] GAGO, J., MARTINEZ- NÚÑEZ, L., LANDIN M. and GALLEGO, P. Modeling the effects of light and sucrose on in vitro propagated plants: A multiscale system analysis using artificial intelligence techonology, Plos One, 9(1), 2014, doi: 10.1371/journal.pone.0085989.

[52] DURING, H. and HARST, M. Stomatal behaviour, photosynthesis and photorespiration of in vitro-grow grapevines: Effects of light and CO2, Vitis, 35(4), 1996, p. 163-167, ISSN: 2367-4156.
Cómo citar
Lopez Diaz, C. M., Suárez Padrón, I. E., & Pérez Abdala, C. A. (2020). Micropropagación de Gynerium sagitatum Aubl. cvs "criolla,"costera" y "martinera". Biotecnología En El Sector Agropecuario Y Agroindustrial, 18(2), 60-69. https://doi.org/10.18684/BSAA(18)60-69
Publicado
2020-06-16
Sección
Artículos de Investigaciòn