Bioestimulación de frijol guajiro y su simbiosis con Rhizobium por ácidos húmicos y Bacillus mycoides

  • Nelson Osvaldo Valero Valero Grupo de Investigación en Microbiología Agrícola y Ambiental - Universidad Popular del Cesar https://orcid.org/0000-0001-9186-6245
  • Claudia Marcela Vergel Castro
  • Yeison Enrique Ustate Morales Grupo de Investigación DESTACAR - Universidad de La Guajira
  • Liliana Cecilia Gómez Gómez Grupo de Investigación en Microbiología Agrícola y Ambiental - Universidad Popular del Cesar
Palabras clave: Vigna unguiculata L., Rhizobium sp., Guajira, bioestimulantes, Guajira, Lombricompost, Lignito, Suelo Semiárido, Nodulación, Caprino, Carbón Pobre

Resumen

La bioestimulación es una tecnología pertinente en apoyo a la intensificación de la agricultura ecológica, principalmente en suelos de zonas marginales donde los tensores ambientales mantienen a las plantas bajo condiciones de estrés permanente en detrimento de la productividad. Los bioestimulantes promueven en la planta cambios fisiológicos y morfológicos conducentes a una mejor adaptación en condiciones adversas e incrementos en el crecimiento y productividad. En este trabajo se evaluó el efecto bioestimulante de Bacillus mycoides BSC25 y ácidos húmicos derivados de lombricompost de estiércol de caprino (AH-L) y de un carbón pobre tipo lignito (AH-C), sobre el frijol guajiro (Vigna unguiculata L. Walp). El trabajo comprendió: 1) la comprobación de la presencia de rizóbios en el suelo, con capacidad de nodular V. unguiculata, y caracterización molecular de una cepa aislada, 2) experimentos bajo condiciones controladas en cámara de crecimiento vegetal, para comprobar la estimulación del crecimiento temprano del frijol tratado con AH-L, AH-C o B. mycoides y la aplicación conjunta AH-B. mycoides, 3) un experimento de bioestimulacion con AH-L, AH-C y B. mycoides bajo condiciones de campo, en un suelo semiárido de la media Guajira. Adicionalmente se determinó la identidad química de los AH, relacionada con su bioactividad. Se encontró que en el suelo persistía una población de Rhizobium sp capaz de nodular el frijol guajiro, el tratamiento con los agentes bioestimulantes favorece el crecimiento de la planta e incrementa el grado de nodulación por la población nativa de rizóbios, lo cual sugiere la conveniencia de promover esta tecnología para mejorar la producción del cultivo de frijol guajiro.

Descargas

Los datos de descargas todavía no están disponibles.

Asuntos:

Original paper

Disciplinas:

Ciencias agrarias

Lenguajes:

Articulo original

Referencias bibliográficas

AGUIAR, N.O.; OLIVARES, F.L.; NOVOTNY, E.H.; CANELLAS, L.P. Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. Peer Journal, 6 e5445, 2018, p. 1-28.

https://doi.org/10.7717/peerj.5445.

ARAMENDIZ-TATIS, H.; ESPITIA-CAMACHO, M.; CARDONA-AYALA, C. Adaptation and stability of cowpea (Vigna unguiculata (L.) Walp) bean cultivars in the tropical dry forest of Colombia. Australian Journal of Crop Science, v. 13, n. 6, 2019, p. 1009–1016.

https://doi.org/10.21475/ajcs.19.13.06.p1965.

BORRISS, R. Phyto-Microbiome in Stress Regulation. Phytostimulation and Biocontrol by the Plant-Associated Bacillus amyloliquefaciens FZB42: An Update BT - Bacilli and Agrobiotechnology. 1 ed. Singapore (Singapore): Kumar M.; Kumar V.; Prasad R. (eds), 2016, p 163–184.

BULGARI, R.; FRANZONI, G.; FERRANTE, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, v. 9, n. 6, 2019.

https://doi.org/10.3390/agronomy9060306.

CANELLAS, L.P.; CANELLAS, N.; SOUZA, L.E.; OLIVARES, F.L.; PICCOLO, A. Plant chemical priming by humic acids. Chemical and Biological Technolgies in Agriculture, v. 7, n. 1, 2020, p. 1-17.

https://doi.org/10.1186/s40538-020-00178-4.

CANELLAS, L.P.; OLIVARES, F.L.; CANELLAS, N.O.; MAZZEI, P.; PICCOLO, A. Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technolgies in Agriculture, v. 6, n. 1, 2019, p. 1-14.

https://doi.org/10.1186/s40538-018-0139-7.

CASTELLANOS-SUAREZ, D.E.; GIGON, A.; PUGA-FREITAS, R.; LAVELLE, P.; VELASQUEZ, E.; BLOUIN, M. Combined effects of earthworms and IAA-producing rhizobacteria on plant growth and development. Applied Soil Ecology, v. 80, 2014, p. 100-107. https://doi.org/10.1016/j.apsoil.2014.04.004.

CHANG, R.R.; MYLOTTE, R.; HAYES, M.H.; MCLNERNEY, R.; TZOU, Y.M. A Comparison of the Compositional Differences Between Humic Fractions Isolated by the IHSS and Exhaustive Extraction Procedures. Naturwissenschaften, v. 101, n. 3, 2014, p. 197-209.

https://doi.org/10.1007/s00114-013-1140-4.

CHIBOUB, M.; JEBARA, S.H.; ABID, G.; JEBARA, M. Co-inoculation Effects of Rhizobium sullae and Pseudomonas sp. on Growth, Antioxidant Status, and Expression Pattern of Genes Associated with Heavy Metal Tolerance and Accumulation of Cadmium in Sulla coronaria. Journal of Plant Growth Regulation, v. 39, n. 1, 2020, p. 216-228. https://doi.org/10.1007/s00344-019-09976-z.

CUBILLOS-HINOJOSA, J. G.; SILVA-ARAUJO, D. A.; SÁ, S. D. Rizóbios nativos eficientes en la fijación de nitrógeno en Leucaena leucocephala en Rio Grande do Sul, Brasil. Biotecnología En El Sector Agropecuario Y Agroindustrial, v. 19, n. 1, p.128-138.

http://dx.doi.org/10.18684

CUBILLOS-HINOJOSA, J.G.; VALERO-VALERO, N.O.; PERALTA, A. Effect of a low rank coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in field conditions. Revista Facultad Nacional de Agronomía, v. 70, n. 3, 2017, p. 8271–8284. https://doi.org/10.15446/rfna.v70n3.62478.

DE AQUINO, A.M.; CANELLAS, L.P.; DA SILVA, A.; CANELLAS, N.O.; LIMA, L.; OLIVARES, F.L.; PICCOLO, A.; SPACCINI, R. Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. Journal of Analytical and Applied Pyrolysis, v. 141, 2019, p. 104634. https://doi.org/10.1016/j.jaap.2019.104634.

DU JARDIN, P.; XU, L.; GEELEN, D. The Chemical Biology of Plant Biostimulants. Agricultural Functions and Action Mechanisms of Plant Biostimulants (PBs) an Introduction. 1 ed. West Sussex (UK): John Wiley & Sons Ltd, 2020, p. 1-30. https://doi.org/10.1002/9781119357254.ch1.

EL HASINI, S.; DE NOBILI, M.; AZZOUZI, M.; AZIM, K.; DOUAIK, A.; LAGHROUR, M.; EL ISRISSI, Y.; EL ALAOUI, M.; ZOUAHRI, A . The influence of compost humic acid quality and its ability to alleviate soil salinity stress. Internationa Journal of Recycling Organic waste in Agriculture, v. 9, n. 1, 2020, p. 21-31. 2020,

https://doi.org/10.30486/ijrowa.2020.671213.

GAO, T.G.; XU, Y.Y.; JIANG, F.; LI, B.Z.; YANG, J.S.; WANG, E.T.; YUAN,L.H. Nodulation characterization and proteomic profiling of bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials. Scientific Reports, v. 5, n. 10836, 2014, p. 1–13.

https://doi.org/10.1038/srep10836.

HAN, Q.; MA, Q.; CHEN, Y.; TIAN, B.; XU, L.; BAI, Y.; CHEN, W.; LI, X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal., v. 14, n. 8, 2020, p. 1915-1928.

https://doi.org/10.1038/s41396-020-0648-9.

HTWE, A.Z.; MOH, S.M.; KYI, M.; YAMAKAWA, T. Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Science and Plant Nutrition, v. 64, n. 2, 2018, p. 222-229.

https://doi.org/10.1080/00380768.2017.1421436.

JINDO, K.; OLIVARES, F.L.; DA PAIZÃO-MALCHER, D.J.; SÁNCHEZ-MONEDERO, M.A.; KEMPENAAR, C.; CANELLAS, L.P. From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent. Frontiers in Plant Science, v. 11, n. 426, 2020, p. 1–10.

https://doi.org/10.3389/fpls.2020.00426.

KAYA, C.; AKRAM, N.A.; ASHRAF, M.; SONMEZ, O. Exogenous Application of Humic Acid Mitigates Salinity Stress in Maize (Zea mays L.) Plants by Improving some Key Physico-biochemical Attributes. Cereal Research Communications, v. 46, n. 1, 2018, p. 67-78. https://doi.org/10.1556/0806.45.2017.064.

LOTFI, R.; KALAJI, H.; VALIZADEH, G.; KHALILVAND, E.; HEMATI, A.; GHARAVI-KOCHEBAGH, P.; GHASSEMI, A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, v. 56, n. 3, 2018, p. 962–970.

https://doi.org/10.1007/s11099-017-0745-9.

MAJI, D.; MISRA, P.; SING, S.; KALRA, A. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, v. 110, 2017, p. 97-108.

https://doi.org/10.1016/j.apsoil.2016.10.008.

MENDOZA-LABRADOR, J.A.; BONILLA-BUITRAGO, R.R. Infectividad y efectividad de rizobios aislados de suelos de la Costa Caribe Colombiana en Vigna unguiculata. Revista Colombiana de Biotecnología, v. 16, n. 2, 2014, p. 84-89. https://doi.org/10.15446/rev.colomb.biote.v16n2.47246.

MISHRA, P.K.; MISHRA, S.; SELVAKUMAR, G.; BISHT, J.K.; KUNDU, S.; SHANKAR-GUPTA, H. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World Journal of Microbioliology and Biotechnology, v. 25, n. 5, 2009, p. 753-761.

https://doi.org/10.1007/s11274-009-9963-z.

MOHANRAM, S.; KUMAR, P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Annals of Microbiology, v. 69, n. 4, 2019, p. 307-320. https://doi.org/10.1007/s13213-019-01448-9.

MULFORD, J.; CUBILLOS, J.; MILIAN, P. Aislamiento de cepas de Rhizobium spp.; asociados a dos leguminosas forrajeras en el Centro Biotecnológico del Caribe. Revista Colombiana de Microbiología Tropical, v. 2, n. 1, 2012, p. 12-21.

NDUNGU, S.M.; MESSMER, M.M.; ZIEGLER, D.; GAMPER, H.A.; MÉSZÁROS, É.; THUITA, M.; VANLAUWE, B.; FROSSARD, E.; THONAR, C. Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture Ecosystems & Environment, v. 261, 2018, p. 161-171. 2018,

https://doi.org/10.1016/j.agee.2017.12.014.

OLIVEIRA-NUNES, R.; ABRAHÃO-DOMICIANO, G.; SOUSA-ALVES, W.; AMARAL-MELO, A.C.; SOUSA-NOGUEIRA, F.C.; CANELLAS, L.P.; OLIVARES, F.L.; ZINGALI, R.B.; SOARES, M.R. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Science Reports, v. 9, n. 1, 2019, p. 1-11.

https://doi.org/10.1038/s41598-019-48509-2.

PIEDADE-MELO, A.; OLIVARES, F.L.; OLIVEIRA-MÉDICI, L.; TORRES-NETO, A.; BARROS-DOBBSS, L.; CANELLAS, L.P. Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chemical and Biological Technologies in Agriculture, v. 4, n. 1, 2017, p. 1-9.

https://doi.org/10.1186/s40538-017-0090-z.

RAJENDRAN, G.; SING, F.; DESAI, A.J.; ARCHANA, G. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresource Technology, v. 99, n. 11, 2008, p. 4544–4550.

https://doi.org/10.1016/j.biortech.2007.06.057.

ROOMI, S.; MASI, A.; BATTISTA-CONSELVAN, G.; TREVISAN, S.; QUAGGIOTTI, S.; PIVATO, M.; ARRIGONI, G.; YASMIN, T.; CARLETTI, P. Protein profiling of arabidopsis roots treated with humic substances: Insights into the metabolic and interactome networks. Frontiers in Plant Science, v. 9, n. 1812, 2018, p. 1-19. https://doi.org/10.3389/fpls.2018.01812.

ROUPHAEL, Y.; COLLA, G. Biostimulants in Agriculture. Frontiers in Plant Science, v. 11, n. 40, 2020, p.1-7.

https://doi.org/10.3389/fpls.2020.00040.

SAEID, A.; PROCHOWNIK, E.; DOBROWOLSKA-IWANEK, J. Phosphorus Solubilization by Bacillus Species. Molecules, v.23, n,11, 2018, p1-18.

https://doi.org/10.3390/molecules23112897

SCHWARTZ, A.R.; ORTIZ, I.; MAYMON, M.; HERBOLD, C.W.; FUJISHIGE, N.A.; VIJANDERAN, J.A.; VILLELLA, W.; HANAMOTO, K.; DIENER, A.; SANDERS, E.R.; DEMANSON, D.A.; HIRSCH, A.M. Bacillus simplex—A Little Known PGPB with Anti-Fungal Activity—Alters Pea Legume Root Architecture and Nodule Morphology When Coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy, v. 3, n. 4, 2013, p. 595–620. https://doi.org/10.3390/agronomy3040595.

SHAH, Z.H.; REHMAN, H.M.; AKHTAR, T.; ALSAMADANY, H.; HAMOOH, B.T.; MUJTABA, T.; DAUR, I.; ZAHRANI, Y.; ALZAHRANI, H.A.; ALI, S.; YANG, S.H.; CHUNG, G. Humic substances: Determining potential molecular regulatory processes in plants. Frontiers in Plant Science, v. 9, n. 263, 2018, p. 1-12.

https://doi.org/10.3389/fpls.2018.00263.

STEVENS, C.; GEELEN, D.; XU, L. The Chemical Biology of Plant Biostimulants. 1 ed West Sussex (UK): John Wiley & Sons Ltd, 2020. 301p.

https://doi.org/10.1002/9781119357254.

VALERO-VALERO, N.O.; GÓMEZ-GÓMEZ, L.C.; MELGAREJO, L.M. Supramolecular characterization of humic acids obtained through the bacterial transformation of a low rank coal. Journal of the Brazilian Chemical Society, v. 29, n. 9. 2018, p. 1842–1853. https://doi.org/10.21577/0103-5053.20180060.

WOZNIAK, E.; BLASZCAK, A.; WIATRAK, P.; CANADY, M. The Chemical Biology of Plant Biostimulants. Biostimulant Mode of Action: Impact of Biostimulant on Whole‐Plant Level. 1 ed West Sussex (UK): John Wiley & Sons Ltd, 2020, p. 205-227. https://doi.org/10.1002/9781119357254.ch8.

Cómo citar
Valero Valero, N. O., Vergel Castro, C. M. ., Ustate Morales, Y. . E. ., & Gómez Gómez, L. C. . (2021). Bioestimulación de frijol guajiro y su simbiosis con Rhizobium por ácidos húmicos y Bacillus mycoides. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2), 119–134. https://doi.org/10.18684/bsaa.v19.n2.2021.1608
Publicado
2021-03-11
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: