Monitoring of the hydrolysis of Quinoa, Rice and Soy proteins by FT-IR spectroscopy

  • Diego Fernando Roa Acosta Universidad del Cauca
  • Jesus Eduardo Bravo Gómez Universidad del Cauca
  • Jose Luis Hoyos Concha Universidad del Cauca
Palabras clave: Proteína de Quinua, Proteína de Arroz, Proteína de Soya, Hidrolizados, Estructura B-sheet, estructura B-turns, Enzima Alcalasa, Enzima Flavorzima, Espectroscopia infrarroja, Función de Fourier

Resumen

Las proteínas que son sometidas a procesos de hidrólisis aumentan sus propiedades bioactivas y funcionales, por ello, en este trabajo se realizó el seguimiento de la hidrólisis de proteínas mediante espectroscopia infrarroja de rango medio, para determinar los cambios estructurales que experimentan las proteínas durante la hidrólisis. La hidrólisis enzimática con endo / exoproteasas se llevó a cabo en los tres aislados proteicos, las enzimas utilizadas fueron Alcalase 2.4L y Flavorzyme® del laboratorio Sigma. La relación enzima / sustrato fue del 5%. Se obtuvieron grados de hidrólisis entre 46% y 38.4% para el aislado de proteína de quinua y el aislado de proteína de arroz, respectivamente. Tanto el seguimiento de la hidrólisis enzimática del aislado de proteína de quinua como del aislado de proteína de soja fue de 60 minutos con Alcalasa® 2.5L y 120 minutos con Flavorzima®, con respecto al aislado proteico de Arroz, los tiempos de hidrólisis establecidos fueron de 60 minutos con Alcalase 2.4L y 20 minutos con Flavorzima ®; tiempos mayores que estos, no se observaron diferencias significativas en el grado de hidrólisis. A modo de comparación, los aislados proteicos y sus hidrolizados se estudiaron en el rango del infrarrojo medio (4000 cm-1 a 600 cm-1) para obtener información sobre la estructura de la proteína, para ello se utilizó una técnica de deconvolución del espectro mediante la función de transformada de Fourier. Estos espectros mostraron diferencias significativas en la estructura secundaria de la proteína, con respecto al análisis de las áreas, las cuales fueron determinadas mediante una función gaussiana; los cambios más favorables se dieron principalmente en la formación de estructuras b-sheet y b-turns.

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

DALIRI, HESAM; AHMADI, RAMAN; PEZESHKI, AKRAM; HAMISHEHKAR, HAMED; MOHAMMADI, MARYAM; BEYRAMI, HOSSEIN; KHAKBAZ-HESHMATI, MARYAM; GHORBANI, MARJAN. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. LWT- Food Science and Technology, v. 150, 2021.

https://doi.org/10.1016/j.lwt.2021.111853

DELEU, LOMME; LAMBRECHT, MARLIES; VAN DE VONDEL, JULIE; DELCOUR, JAN. The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, v. 25, 2019, p. 98-103.

https://doi.org/10.1016/j.cofs.2019.02.017

GALANTE, MICAELA; DE FLAVIIS, RICCARDO; BOERIS, VALERIA; SPELZINI, DARIO. Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels. LWT- Food Science and Technology, 118, 2020, 108845.

https://doi.org/10.1016/j.lwt.2019.108845

GARCIA, MIGUEL; ZURITA, ANDRES; STENCHAUNER, ROMAN; ROA, DIEGO; JACOBSEN, SVEN. Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean journal agriculture research, v. 80, n.2, 2020

http://dx.doi.org/10.4067/S0718-58392020000200290

GHUMMAN, ATINDER; MUDGAL, SWASTI; SINGH, NARPINDER; RANJAN, BRAJESH; KAUR, AMRITPAL; CHAND-RANA, JAI. Physicochemical, functional and structural characteristics of grains, flour and protein isolates of Indian quinoa lines. Food Research International, v. 140, 2021.

https://doi.org/10.1016/j.foodres.2020.109982

GÓMEZ, ANDREA; GAY, CAROLINA; TIRONI, VALERIA; AVANZA, MARIA-VICTORIA. Structural and antioxidant properties of cowpea protein hydrolysates. Food Bioscience, v. 41, 2021.

https://doi.org/10.1016/j.fbio.2021.101074

HAQUE, M. AMDADUL; PUTRANTO, ADITYA; ADHIKARI, BENU. Predictions of Drying Kinetics of Aqueous droplets Containing WPI-Lactose and WPI-Trehalose by application of composite reaction engineering approach (REA). Journal of Food Engineering, v. 189, 2016, p. 29-36.

https://doi.org/10.1016/j.jfoodeng.2016.05.019

HESAM, DALIRIA; RAMAN, AHMADIAB; AKRAM, PEZESHKI; HAMED, HAMISHEHKAR; MARYAM, MOHAMMADI; HOSSEIN, BEYRAMI; MARYAM, HESHMATI; MARJAN GHORBANI. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. LWT- Food Science and Technology, v. 150, 2021. https://doi-org.acceso.unicauca.edu.co/10.1016/j.lwt.2021.111853

KRISTOFFERSEN, KENNETH-AASE; AFSETH, NILS-KRISTIAN; BÖCKER, ULRIKE; LINDBERG, DIANA; DE VOGEL-VAN DEN BOSCH, HELEEN; RUUD, MARI-LINNÉA; WUBSHET, SILESHI. Average molecular weight, degree of hydrolysis and dry-film FTIR fingerprint of milk protein hydrolysates: Intercorrelation and application in process monitoring. Food Chemistry, v. 310, 2020.

https://doi.org/10.1016/j.foodchem.2019.125800

LE, LIQING; GONG, XUXIAO; AN, QI; XIANG, DABING; ZOU, LIANG; PENG, LIANXIN; WU, XIAOYONG; TAN, MAOLING; NIE, ZHONGLI; WU, QI; ZHAO, GANG; WAN, YAN. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chemistry, v. 357, 2021.

https://doi.org/10.1016/j.foodchem.2021.129752

LENI, GIULIA; SOETEMANS, LISE; CALIGIANI, AUGUSTA; SFORZA, STEFANO; BASTIAENS, LEEN. Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. MDPI Journal Foods, v. 9, 2020, p. 381.

https://doi.org/doi.org/10.3390/foods9040381

LOMPONG, VILAILAK; BENJAKUL, SOOTTAWAT; KANTACHOTE, DUANGPORN; SHAHIDI, FEREIDOON. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, v. 102, 2007, p. 1317–1327.

https://doi.org/10.1016/j.foodchem.2006.07.016

MAHDAVI‐YEKTA, MINA; NOURI, LEILA; AZIZI, MOHAMMAD. The effects of hydrolysis condition on antioxidant activity of protein hydrolyzate from quinoa. Food Science & Nutrition, v. 7, n. 3, 2019, p. 930–936.

https://doi.org/10.1002/fsn3.871

MIR, NISAR; RIAR, CHARANJIT; SINGH, SUKHCHARN. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties. Food Structure, v. 28, 2021.

https://doi.org/10.1016/j.foostr.2021.100189

MONTOYA-RODRÍGUEZ, ALVARO; OSUNA-GALLARDO, EVELYN-ISABEL; CABRERA-CHÁVEZ, FRANCISCO; MILÁN-CARRILLO, JORGE; REYES-MORENO, CUAUHTÉMOC; MILÁN-NORIS, EVELIA-MARÍA; CUEVAS-RODRÍGUEZ, EDITH-OLIVA; MORA-ROCHÍN, SARAID. Evaluation of the in vitro and in vivo antihypertensive effect and antioxidant activity of blue corn hydrolysates derived from wet-milling. Revista de Ciencias Biológicas y de la Salud, v. 2, 2020, p. 155-162.

MUCHEKEZA, JANE; JOMBO, TALKNICE; MAGOGO, CHARLES; MUGARI, AMIEL; MANJERU, PEPUKAI; MANHOKWE, SHEPHER. Proximate, physico-chemical, functional and sensory properties OF quinoa and amaranth flour AS potential binders in beef sausages. Food Chemistry, v. 368, 2021.

https://doi.org/10.1016/j.foodchem.2021.130619

PAKKAWAT, DETCHEWA; PATCHAREE, PRASAJAK; CHANTHIMA, PHUNGAMNGOEN; WICHIEN, SRIWICHAI; ONANONG, NAIVIKULC; ANUCHITA, MOONGNGARM. Substitution of rice flour with rice protein improved quality of gluten-free rice spaghetti processed using single screw extrusión. LWT- Food Science and Technology, v. 153, 2022.

https://doi.org/10.1016/j.lwt.2021.112512

PAL-SING, TAJENDRA; SIDDIQI, RAASHID-AHMAD; SINGH-SOGI, DALBIR Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. LWT- Food Science and Technology, v. 138, 2021.

https://doi.org/10.1016/j.lwt.2020.110648

PERCZEL, A.; PARK, K.; FASMAN, GERALD D. Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel β‐sheet in proteins. Proteins: Structure, Function, and Bioinformatics, v. 13, n. 1, 1992, p. 57–69.

https://doi.org/10.1002/prot.340130106

ROA-ACOSTA, DIEGO-FERNANDO; BRAVO-GÓMEZ, JESUS-EDUARDO; GARCÍA-PARRA, MIGUEL-ANGEL; RODRÍGUEZ-HERRERA, RAÚL; SOLANILLA-DUQUE, JOSE- FERNANDO. Harina hiperproteica de quinua (Chenopodium Quinoa Wild): Seguimiento y estudio de propiedades estructurales y reológicas. Food Science and Technology, v. 121, 2019.

https://doi.org/10.1016/j.lwt.2019.108952

ROA-ACOSTA, DIEGO-FERNANDO; SOLANILLA-DUQUE, JOSE-FERNANDO; AGUDELO-LAVERDE, LINA-MARCELA.; VILLADA-CASTILLO, HÉCTOR-SAMUEL; TOLABA, MARCELA-PATRICIA. Structural and thermal properties of the amaranth starch granule obtained by high-impact wet milling. International Journal of Food Engineering, v. 16, 2020, p. 10.

https://doi.org/10.1515/ijfe-2020-0024

RODRÍGUEZ-GÓMEZ, JOSÉ; PRIETO, JAVIER-MATÍAS; CRUZ-SOBRADO, VERÓNICA; CALVO-MAGRO, PATRICIA. Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. Journal of Food Composition and Analysis, v. 99, 2021.

https://doi.org/10.1016/j.jfca.2021.103876

SAAVEDRA, PONCE-DE LEÓN; VALDEZ, ARANA. Nutritional and functional evaluation of 17 quinoa (Chenopodium quinoa Willd) accessions cultivated in the Andean area of Peru. Scientia Agropecuaria, v. 12, n. 1, 2021, p. 15–23.

https://doi.org/10.17268/sci.agropecu.2021.002

SUN, WENJUN; ZHAN, JUNYI; ZHENG, TIANRUN; WU, GUOMING; XU, HAISHEN; CHEN, YING; YAO, MIN; ZEN, JING; YAN, JUN; CHEN, HUI. Involvement of several putative transporters of different families in β-cyclocitral-induced alleviation of cadmium toxicity in quinoa (Chenopodium quinoa) seedlings. Journal of Hazardous Materials, v. 419, 2021.

https://doi.org/10.1016/j.jhazmat.2021.126474

VÁZQUEZ-FRIAS, R.; ICAZA-CHÁVEZ, M.; RUIZ-CASTILLOM, M.; AMIEVA-BALMORIG, A.; ARGÜELLO-ARÉVALOR, I.; CARMONA-SÁNCHEZ, M.; FLORES-BELLO, V.; HERNÁNDEZ-ROSILES, G.; HERNÁNDEZ-VEZ, I.; MEDINA-VERA, E.; MONTIJO-BARRIOS, I.; NÚNEZ-BARRERA, B.; PINZÓN-NAVARRO, C.; SÁNCHEZ-RAMÍREZ, C. Technical opinion of the Asociación Mexicana de Gastroenterología on soyplant-based beverages. Revista de gastroenterología de México, v. 85, n. 4, 2020, p. 461-471.

https://doi.org/10.1016/j.rgmx.2020.07.005

VILLANUEVA, ALVARO; VIOQUE, JAVIER; SÁNCHEZ-VIOQUE, RAÚL; CLEMENTE, ALFONSO; BAUTISTA, J.D.; MILLÁN, FRANCISCO. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas y Aceites, v. 50, n. 6, 1999, p. 472–476.

https://doi.org/10.3989/gya.1999.v50.i6.697

VILLANUEVA, ALVARO; VIOQUE, JAVIER; SÂNCHEZ-VIOQUE, RAÚL; CLÉMENTE, ALFONSO; PEDROCHE, JUSTO; BAUTISTA, JUAN; MILLAN, FRANCISCO. Peptide characteristics of sunflower protein hydrolysates. Journal of the American Oil Chemists’ Society, v. 76, n. 12, 1999, p. 1455–1460.

https://doi.org/10.1007/s11746-999-0184-2

WU, QI; BAI, XUE; WU, XIAOYONG; XIANG, DABING; WAN, YAN; LUO, YIMING; SHI, XIAODONG; LI, QIANG; ZHAO, JUNMING; QIN, PEIYOU; YANG, XIUSHI; ZHAO, GANG. Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. Plant Physiology and Biochemistry, v. 151, 2020, p. 443–456.

https://doi.org/10.1016/j.plaphy.2020.03.050

WOUTERS, ARNO; DELCOUR, JAN. Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems.

Current Opinion in Food Science, v. 25, 2019, p. 19-27.

https://doi.org/10.1016/j.cofs.2019.02.002

XING, BAO; TENG, CONG; SUN, MENGHAN; ZHANG, QINPING; ZHOU, BANGWEI; CUI, HONGLIANG; REN, GUIXING; YANG, XIUSHI; QIN, PEIYOU. Effect of germination treatment on the structural and physicochemical properties of quinoa starch. Food Hydrocolloids, v. 115, 2021.

https://doi.org/10.1016/j.foodhyd.2021.106604

XIAOXUE, LU; RONGRONG, MA; HONGWEI, QIU; CHUNRUI, SUN; YAOQI, TIAN. Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. International Journal of Biological Macromolecules, v. 193, 2021, p. 311-318.

https://doi.org/10.1016/j.ijbiomac.2021.10.140

YANG, HUAYAN; YANG, SHOUNING; KONG, JILIE; DONG, AICHUN; YU, SHAONING. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature Protocol, v. 10, n. 3, 2015, p. 382-396.

https://doi.org/10.1038/nprot.2015.024

ZANG, XIAODAN; YUE, CHONGHUI; WANG, YUXIN; SHAO, MEILI; YU, GUOPING. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. Journal of Cereal Science, 85, 2019, p. 168-174.

https://doi.org/10.1016/j.jcs.2018.09.001

Cómo citar
Roa Acosta, D. F., Bravo Gómez, J. E., & Hoyos Concha, J. L. (2021). Monitoring of the hydrolysis of Quinoa, Rice and Soy proteins by FT-IR spectroscopy. Biotecnología En El Sector Agropecuario Y Agroindustrial, 1-12. https://doi.org/10.18684/rbsaa.v.n.2022.1941
Publicado
2021-11-18
Sección
Artículos de Investigaciòn

Más sobre este tema