Microalgas: relación bibliométrica de las biorrefinerías, la economía circular y el medio ambiente

  • Jorge Luis Sanchez Ortega Universidad del Cauca
  • Jorge Enrique López Galán Universidad del Valle
Palabras clave: Chlorella vulgaris, Biofuels, Bioactive compounds, Biomass, VosViewer software, Microalgae, Bibliometric analysis, Databases, Biorefinery, Process simulation

Resumen

Por las ventajas que tienen las microalgas frente a los cultivos vegetales, como la rapidez de su crecimiento, el mayor consumo de CO2 y producción de O2, y la mayor variedad de productos que se pueden aprovechar, con el presente trabajo se buscó cuantificar las tendencias que hay en el mundo investigativo. Para dicho fin, teniendo en cuenta diferentes palabras claves relacionadas de varias formas, se realizó una búsqueda de los últimos diez años, utilizando las bases de datos de Scopus.  Las palabras centrales utilizadas estuvieron más relacionadas con biorrefinerías, microalgas, productos y simulación.  Igualmente se utilizó la plataforma Wizdom.ai y el software de análisis de datos VosViewer. Se encontró que entre los años 2015 y 2019, las publicaciones aumentaron entre el 74 y el 89 %. El análisis gráfico y estadístico a través de VosViewer permitió identificar que la relación entre biorrefinería y microalgas está representada por una tendencia en publicaciones sobre el tema de los biocombustibles y que en el escenario del análisis planteado entre microalgas y simulación de procesos aún existe poca información que corresponda al concepto de biorrefinería. Basados en un análisis global de los resúmenes de la mayor parte de las publicaciones, se identificaron las principales dificultades y vacíos informativos que se han tenido en los procesos bajo el concepto de biorrefinerías, especialmente relacionado con los procesos, los costos, la economía circular y los aspectos ambientales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

ARMSHAW, P.; PEMBROKE, J.T. Optimisation of ethanol production in Synechocystis PCC 6803, the DEMA approach. In 1st International Solar Fuels Conference (ISF-1) in Uppsala, Sweden . 2015.https://www.researchgate.net/profile/Patricia-Armshaw2/publication/273288565_Optimisation_of_ethanol_production_in_Synechocystis_PCC_6803_the_DEMA_approach/links/55420c290cf21b21437591b1/Optimisation-of-ethanol-production-in-Synechocystis-PCC-6803-the-DEMA-approach.pdf [consulted march 22, 2022]

BECKER, E.W. Micro-algae as a source of protein. Biotechnology advances, v. 25, n. 2, 2006, p. 207–210.https://doi.org/10.1016/j.biotechadv.2006.11.002

BRENNAN, L.,; OWENDE, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, v. 14, n. 2, 2010, p. 557–577.https://doi.org/10.1016/j.rser.2009.10.009

CHEW, K. W.; YAP, J.Y.; SHOW, P.L.; SUAN, N.H.; JUAN, J.C.; LING, T.C.; LEE, D.J.; CHANG, J.S. Microalgae biorefinery: High value products perspectives. Bioresource Technology, v. 229, 2017, p. 53–62.https://doi.org/10.1016/j.biortech.2017.01.006

CHISTI, Y. Biodiesel from microalgae. Biotechnology advances, v. 25, n. 3, 2007, p. 294–306.https://doi.org/10.1016/j.biotechadv.2007.02.001

CHOWDHURY, H.; LOGANATHAN, B. Third-generation biofuels from microalgae: a review. In Current Opinion in Green and Sustainable Chemistry, v. 20, 2019, p. 39–44. https://doi.org/10.1016/j.cogsc.2019.09.003

CHU, W.L.; PHANG, S.M. Bioactive Compounds from Microalgae and Their Potential Applications as Pharmaceuticals and Nutraceuticals BT - Grand Challenges in Algae Biotechnology, 2019, p. 429–469.https://doi.org/10.1007/978-3-030-25233-5_12

CICCI, A.; SED, G.; JESSOP, P.G.; BRAVI, M. Circular extraction: An innovative use of switchable solvents for the biomass biorefinery. Green Chemistry, v. 20, n. 17, 2018, p. 3908–3911. https://doi.org/10.1039/c8gc01731j

DE FARIAS-SILVA, C.E.; BERTUCCO, A. Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, v. 51, n. 11, 2016, p. 1833–1842. https://doi.org/10.1016/j.procbio.2016.02.016

DEMIRBAS, A. Use of algae as biofuel sources. Energy Conversion and Management, v. 51, n. 12, 2010, p. 2738–2749. https://doi.org/10.1016/j.enconman.2010.06.010

DIMIAN, A.C.; BILDEA, C.S. Integrated Process Design. Chemical Process Design, 2008, p. 1–20.https://doi.org/10.1002/9783527621583.ch1

DING, Y.; CHOWDHURY, G.G.; FOO, S. Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing & Management, v. 37, n. 6, 2001, p. 817–842. https://doi.org/10.1016/S0306-4573(00)00051-0

GORRY, P.L.; SÁNCHEZ, L.; MORALES, M. Microalgae Biorefineries for Energy and Coproduct Production. In E.-J. Lopes, M. I. Queiroz, & L. Queiroz Zepka (Orgs.), Energy from Microalgae, 2018, p. 306.https://doi.org/10.1007/978-3-319-69093-3

GOUVEIA, L. Microalgae as a feedstock for biofuels, 2011. https://doi.org/10.1007/978-3-642-17997-6

GOUVEIA, L.; OLIVEIRA, A.C. Microalgae as a raw material for biofuels production. Journal of industrial microbiology & biotechnology, v. 36, n. 2, 2009, p. 269–274.https://doi.org/10.1007/s10295-008-0495-6

HIRANO, A.; UEDA, R.; HIRAYAMA, S.; YASUYUKI, O. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, v. 22, n. 2, 1997, p. 137–142.https://doi.org/10.1016/S0360-5442(96)00123-5

HO, S.H.; CHEN, C.Y.; LEE, D.J.; CHANG, J.S. Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnology Advances, v. 29, n. 2, 2011, p. 189–198. https://doi.org/10.1016/j.biotechadv.2010.11.001

HO, S.H.; HUANG, S.W.; CHEN, C.Y.; HASUNUMA, T.; KONDO, A.; CHANG, J.S. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, v. 135, 2013, p. 157–165. https://doi.org/10.1016/j.biortech.2012.10.100

HU, Q.; SOMMERFELD, M.; JARVIS, E.; GHIRARDI, M.; POSEWITZ, M.; SEIBERT, M.; DARZINS, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, v. 54, n. 4, 2008, p. 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

IWAMOTO, H. Part III Economic Applications of Microalgae. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 2004, p. 255. https://doi.org/10.1002/9780470995280.ch11

JACOB-LOPES, E.; MARONEZE, M.M.; DEPRÁ, M.C.; SARTORI, R.B.; DIAS, R.R.; ZEPKA, L.Q. Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, v. 25, 2019, p. 1–7. https://doi.org/10.1016/j.cofs.2018.12.003

KOLLER, M.; MUHR, A.; BRAUNEGG, G. Microalgae as versatile cellular factories for valued products. Algal Research, v. 6, 2014, p. 52–63. https://doi.org/https://doi.org/10.1016/j.algal.2014.09.002

KOUTRA, E.; TSAFRAKIDOU, P.; SAKARIKA, M.; KORNAROS, M. Microalgal Biorefinery. Microalgae Cultivation for Biofuels Production, 2020, p. 163–185. https://doi.org/10.1016/B978-0-12-817536-1.00011-4

LIU, Z.H.; HAO, N.; WANG, Y.Y.; DOU, C.; LIN, F.; SHEN, R.; BURA, R.; HODGE, D.B.; DALE, B.E.; RAGAUSKAS, A.J.; YANG, B.; YUAN, J.S. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nature Communications, v. 12, n. 1, 2021. https://doi.org/10.1038/s41467-021-23920-4

LOPES, T.F.; CABANAS, C.; SILVA, A.; FONSECA, D.; SANTOS, E.; GUERRA, L.T.; SHEAHAN, C.; REIS, A.; GÍRIO, F. Process simulation and techno-economic assessment for direct production of advanced bioethanol using a genetically modified Synechocystis sp. Bioresource Technology Reports, 6, 2019, p. 113–122.https://doi.org/10.1016/j.biteb.2019.02.010

MA, Y.; WANG, P.; WANG, Y.; LIU, S.; WANG, Q.; WANG, Y. Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating. Renewable Energy, v. 155, 2020, p. 827–836.https://doi.org/10.1016/j.renene.2020.03.176

MATA, T. M.; MARTINS, A.A.; CAETANO, N.S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, v. 14, n. 1, 2010, p. 217–232.https://doi.org/10.1016/j.rser.2009.07.020

PASQUET, V.; CHÉROUVRIER, J.R.; FARHAT, F.; THIÉRY, V.; PIOT, J.M.; BÉRARD, J.B.; KAAS, R.; SERIVE, B.; PATRICE, T.; CADORET, J.P.; PICOT, L. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, v. 46, n. 1, 2011, p. 59–67.https://doi.org/10.1016/j.procbio.2010.07.009

PSYCHA, M.; MAMOS, L. A.; KOKOSSIS, A. Value Chain Synthesis in Algae Biorefineries under Uncertainty. Computer Aided Chemical Engineering, v. 48, 2020, p. 829–834. https://doi.org/10.1016/B978-0-12-823377-1.50139-7

RANGABHASHIYAM, S.; BEHERA, B.; ALY, N.; BALASUBRAMANIAN, P. Biodiesel from microalgae as a promising strategy for renewable bioenergy production-A review. Journal of Environment & Biotechnology Research, v. 6, v. 4, 2017, p. 260–269.

SÁNCHEZ, Ó.J.; CARDONA, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, v. 99, n. 13, 2008, p. 5270–5295. https://doi.org/10.1016/J.BIORTECH.2007.11.013

SEYFABADI, J.; RAMEZANPOUR, Z.; AMINI KHOEYI, Z. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, v. 23, n. 4, 2011, p. 721–726.https://doi.org/10.1007/s10811-010-9569-8

SILVA, S.; FERREIRA, I.C.F.; DIAS, M.M.; FILOMENA-BARREIRO, M. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. 2020, p. 1–23.https://doi.org/10.3390/molecules25153406

SUBHADRA, B.G.; EDWARDS, M. Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Applied Energy, v. 88, n. 10, 2011, p. 3515–3523. https://doi.org/10.1016/j.apenergy.2010.12.051

SUN, R.,;XIAO, B.; LAWTHER, J.M. Fractional and structural characterization of ball-milled and enzyme lignins from wheat straw. Journal of Applied Polymer Science, v. 68, n. 10, 1998, p. 1633–1641.https://doi.org/10.1002/(SICI)1097-4628(19980606)68:10<1633::AID-APP12>3.0.CO;2-Y

URSU, A.V.; MARCATI, A.; SAYD, T.; SANTE-LHOUTELLIER, V.; DJELVEH, G.; MICHAUD, P. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology, v. 157, 2014, p. 134–139. https://doi.org/10.1016/j.biortech.2014.01.071

USOV, A. I.; SMIRNOVA, G.P.; KLOCHKOVA, N.G. Polysaccharides of Algae: 55. Polysaccharide Composition of Several Brown Algae from Kamchatka. Russian Journal of Bioorganic Chemistry, v. 27, n. 6, 2001, p. 395–399.https://doi.org/10.1023/A:1012992820204

VAN ECK, N.J.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, n. 2, 2010, p. 523–538. https://doi.org/10.1007/s11192-009-0146-3

VANTHOOR-KOOPMANS, M.,;WIJFFELS, R.H.; BARBOSA, M.J.; EPPINK, M.H.M. Biorefinery of microalgae for food and fuel. Bioresource technology, v. 135, 2013, p. 142–149. https://doi.org/10.1016/j.biortech.2012.10.135

WANG, B.; LI, Y.; WU, N.; LAN, C.Q. CO2 bio-mitigation using microalgae. Applied microbiology and biotechnology, v. 79, n. 5, 2008, p. 707–718. https://doi.org/10.1007/s00253-008-1518-y

WIZDOM.AI. Biorefinery. 2022.https://www.wizdom.ai/topic/biorefinery/1637397[consulted march 22, 2022]

YEN, H.W.; HU, I.C.; CHEN, C.Y.; HO, S.H.; LEE, D.J.; CHANG, J.S. Microalgae-based biorefinery - From biofuels to natural products. Bioresource Technology, v. 135, 2013, p. 166–174.https://doi.org/10.1016/j.biortech.2012.10.099

Cómo citar
Sanchez Ortega, J. L., & López Galán , J. E. . (2022). Microalgas: relación bibliométrica de las biorrefinerías, la economía circular y el medio ambiente . Biotecnología En El Sector Agropecuario Y Agroindustrial, 21(2), 146–160. https://doi.org/10.18684/rbsaa.v21.n2.2023.1950
Publicado
2022-04-06
Sección
Artículos de Investigaciòn
QR Code