Evaluación de microorganismos y sustratos obtenidos a partir de residuos orgánicos para la producción de celulasas

  • Etna Milena Sanchez Castelblanco SENA
  • Juan Pablo Heredia Martín Servicio Nacional de Aprendizaje – SENA
Palabras clave: Celulosa, Celulasas, Residuos agrícolas, Ameros de mazorca, Vainas de leguminosas, Plazas de mercado, Bacterias celulolíticas, Nitrógeno, Carbono, Sustrato, Medios de cultivo

Resumen

La necesidad de reducir los costos de producción de las enzimas y su amplia utilización en diferentes sectores industriales, ha incrementado el interés en la valorización de residuos agroindustriales como sustratos para la obtención de estos bioproductos. Los residuos agrícolas son una fuente tanto de celulosa como de microorganismos productores de celulasas, por lo que este estudio tuvo como propósito la selección de bacterias celulolíticas aisladas previamente de residuos generados en plazas de mercado y la evaluación de medios formulados a partir de estos. 11 cepas bacterianas fueron cultivadas en caldo Mandels durante 72 horas, evaluando su actividad celulolítica a 30 y 50 ºC. Para la formulación de medios de cultivo se determinó el contenido de celulosa, nitrógeno y carbono orgánico total de los ameros de mazorca y vainas de leguminosas recolectados en una plaza de mercado. Se elaboraron tres medios de cultivo utilizando los residuos como fuente de celulosa y suplementándolos con peptona, sulfato de amonio y urea como fuente de nitrógeno. El medio A se formuló con residuos troceados y deshidratados, en el medio B estos tuvieron el mismo tratamiento adicionando un paso de licuado y para el medio C se utilizaron residuos licuados sin deshidratar. De las 5 cepas celulolíticas seleccionadas, C6M2 fue cultivada a 37 ºC en los tres medios y la actividad enzimática fue monitoreada durante las 96 horas de fermentación. En los medios A y B se evidenció la producción de celulasas, siendo A el que presentó una mayor actividad (19,82 ± 3,0 U/mL), mientras que en el medio C no se evidenció actividad celulolítica. En conclusión, la cepa bacteriana seleccionada C6M2 es capaz de producir celulasas en medios de cultivo formulados con ameros de mazorca y vainas de leguminosas troceados y deshidratados.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Biotecnología, química, microbiología

Lenguajes:

Español; Castellano

Referencias bibliográficas

ABDULLAH, ROHEENA; AKHTAR, AMMARA; NISAR, KINZA; KALEEM, AFSHAN; IQTEDAR, MEHWISH; IFTIKHAR, TEHREEMA; SALEEM, FAIZA; ASLAM, FARHEEN. Process optimization for enhanced production of cellulases form locally isolated fungal strain by submerged fermentation. Bioscience Journal, v. 37, 2021, p. 1-7.https://doi.org/10.14393/BJ-v37n0a2021-53815

BAJAR, SOMVIR; SINGH, ANITA; BISHNOI, NARSI. Exploration of low-cost agro-industrial waste substrate for cellulase and xylanase production using Aspergillus heteromorphus. Applied Water Science, v. 10, n. 153, 2020, p. 1-9. https://doi.org/10.1007/s13201-020-01236-w

BHARDWA, NISHA; KUMAR, BIKASH; AGRAWAL, KOMAL; VERMA, PRADEEP. Current perspective on production and applications of microbial cellulases: a review. Bioresources Bioprocess, v. 8, n. 95, 2021, p. 1-34. https://doi.org/10.1186/s40643-021-00447-6

BRUST,GERALD. Management Strategies for Organic Vegetable Fertility. En: BISWAS, SHIRLEY-MICALLEF; Safety and Practice for Organic Food. Academic Press, 2019, 408 p. https://doi.org/10.1016/C2016-0-02314-8

CAMACHO, VERUSHKA; SOTO, ROBERTO; GUZMÁN, HÉCTOR. Cellulase production by microorganisms isolated from laguna Blanca, Potosí-Bolivia. Revista Boliviana de Química, v. 38, 2021, p. 148-154.

COÊLHO, MARINA-DE CASTRO; DA CÂMARA-ROCHA, JULIENE; SANTOS, FELIPE-AUGUSTO; RAMOS-GONÇALVES, JUAN-CARLOS; DE VASCONCELOS, SOLANGE-MARIA; SOARES-DE LIMA-GRISI, TERESA-CRISTINA; FLORENTINO-DE MELO -SANTOS, SHARLINE; MACHADO-DE ARAÚJO, DEMETRIUS-ANTÔNIO; TEIXEIRA-DE CARVALHO-GONÇALVES, LAÍS-CAMPOS. Use of agroindustrial wastes for the production of cellulases by Penicillium sp. FSDE15. Journal of King Saud University - Science, v. 33, n. 6, 2021, p. 1-7.https://doi.org/10.1016/j.jksus.2021.101553

DA SILVA,RAQUEL-NASCIMENTO; DE ANDRADE-MELO, LIANY-FIGUERÊDO; LUNA-FINKLER, CHRISTINE-LAMENHA. Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production. Biotechnology Reports, v. 29, 2021, p. 1-8.https://doi.org/10.1016/j.btre.2021.e00599

DE CASTRO, RUANN-JANSER; SATO, HÉLIA-HARUMI. Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste and Biomass Valorization, v. 6, 2015, p. 1085–1093. https://doi.org/10.1007/s12649-015-9396-x

DE SOUZA,THAIZA; YUKIO-KAWAGUTI, HAROLDO. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food and Bioprocess Technology, v. 14, 2021, p. 1446–1477. https://doi.org/10.1007/s11947-021-02678-z

EJAZ,UROOSA; SOHAIL, MUHAMMAD; GHANEMI, ABDELAZIZ. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics, v. 6, 2021, p. 44. https://doi.org/10.3390/biomimetics6030044

GAVIDIA,JOSÉ; VENEGAS, EDMUNDO; RÍOS, MIGUEL; URIBE, JOSÉ; GUTIÉRREZ, DANNY; RENGIFO, ROGER; JARA, DEMETRIO; MARTÍNEZ, JOSÉ. Determinación del factor de conversión de nitrógeno a proteína en huevos Coturnix coturnix L. (Codorniz japonesa). Archivos Venezolanos de Farmacología y Terapéutica, v. 39, 2020, p. 706-708. https://doi.org/10.5281/zenodo.440472

GUNAM-I. B. W; ANTARA-N. S; ANGGRENI-A. A. M. D; SETIYO-Y; WIGUNA-I. P. E; WIJAYA-I. M. M; PUTRA-I. W. W. P. Chemical pretreatment of lignocellulosic wastes for cellulase production by Aspergillus niger FNU 6018. AIP Conference Proceedings, v. 2155, 2019, p. 20-40. https://doi.org/10.1063/1.5125544

HOSSAIN-ARJU; AHAMMED-AKASH; SOBUJ-SAIFUL ISLAM; SHIFAT-SIRATUL KUBRA; SOMADDER-PRATUL DIPTA. Cellulase Producing Bacteria Isolation, Screening and Media Optimization from Local Soil Sample. American Journal of Microbiological Research, v. 9, 2021, p. 62-74. https://doi.org/10.12691/ajmr-9-3-1

HU-YAWEI; KANG-GUANGBO; WANG-LINA; GAO-MENGXUE; WANG-PING; YANG-DONG; HUANG-HE. Current Status of Mining, Modification, and Application of Cellulases in Bioactive Substance Extraction. Current Issues in Molecular Biology, v. 43, n. 2, 2021, p. 687-703. https://doi.org/10.3390/cimb43020050

IBRAHIM-ATEF; HAMOUDA-RAGAA; EL NAGGAR-NOURA; AL SHAKANKERY-FATMA. Bioprocess development for enhanced endoglucanase production by newly isolated bacteria, purification, characterization and in-vitro efficacy as anti-biofilm of Pseudomonas aeruginosa. Scientific Reports, v. 11, 2021, p. 1-24

ISLAM-MAIDUL; PALASH-SARKAR; MOHIUDDIN-A. Optimization of fermentation condition for cellulase enzyme production from Bacillus sp. Malaysian Journal of Halal Research, v. 2, 2019, p. 19-24. https://doi.org/10.2478/mjhr-2019-0009

JAYASEKARA-SANDHYA; RATNAYAKE-RENUKA. (). Microbial Cellulases: An Overview and Applications. En: ALEJANDRO-PASCUAL, MARÍA-MARTÍN; Cellulose. London, (United Kingdom): IntechOpen, 2019, 130 p. https://doi.org/10.5772/intechopen.84531

KALSOOM-R; AHMED-S; NADEEM-M; ABID-M. Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. International Journal of Environmental Science and Technology, v. 16, 2019, p. 921-928. https://doi.org/10.1007/s13762-018-1717-8

KAUR-PRABHJOT; BHARDWAJ-SHUBHANG; BHARDWAJ-NISHI; SHARMA-JITENDER. Lignocellulosic Waste as a Sole Substrate for Production of Crude Cellulase from Bacillus subtilis PJK6 Under Solid State Fermentation Using Statistical Approach. Journal of Carbohydrates, v. 1, n. 1, 2018, p. 1-14.

KAZA-SILPA; YAO-LISA., BHADA-TATA-PERINAZ; VAN WOERDEN-FRANK. What a waste 2.0: a global snapshot of solid waste management to 2050. Banco Mundial. 2018 https://openknowledge.worldbank.org/handle/10986/30317

KAZEEM-MUINAT OLANIKE; SHAH-UMI KALSOM MD; BAHARUDDIN-AZHARI SAMSU. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55. Applied Biochemistry and Biotechnology, v. 182, 2017, p. 1318-1340. https://doi.org/10.1007/s12010-017-2401-z

KHATIWADA-PRABESH; AHMED-JAHED; SOHAG-MD. MEHADI; ISLAM-KAMRUL; AZAD-ABUL. Isolation, Screening and Characterization of Cellulase Producing Bacterial Isolates from Municipal Solid Wastes and Rice Straw Wastes. Journal of Bioprocessing & Biotechniques, v. 6, n. 4, 2016, p. 1-5. https://doi.org/0.4172/2155-9821.1000280

KULIC-GORDANA; RADOJIČIĆ-VESNA. Analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences, v. 56, n. 3, 2011, p. 207-215. https://doi.org/10.2298/JAS1103207K

KURT-AYSE; CEKMECELIOGLU-DENIS. Bacterial cellulase production using grape pomace hydrolysate by shake-flask submerged fermentation. Biomass Conversion and Biorefinery, 2021, p 1-8. https://doi.org/10.1007/s13399-021-01595-7

LEITE-PAULINA; SOUSA-DANIEL; FERNANDES-HELENA; FERREIRA-MARTA; COSTA-ANA RITA; FILIPE-DIOGO; GONÇALVES-MARGARIDA; PERES-HELENA; BELO-ISABEL; SALGADO-JOSÉ MANUEL. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry, v. 27, 2021, p. 1-27.https://doi.org/10.1016/j.cogsc.2020.100407

LI-JIA; ZHANG-FEI; JIANG-DAN; LI-JUN; WANG-FENG; ZHANG-ZHANG; WANG-WEI; ZHAO-XIN. Diversity of Cellulase-Producing Filamentous Fungi From Tibet and Transcriptomic Analysis of a Superior Cellulase Producer Trichoderma harzianum LZ117. Frontiers in Microbiology, v. 11, 2020, p. 1-15. https://doi.org/10.3389/fmicb.2020.01617

LI-TIAN; CHEN-CHAOJI; BROZENA-ALEXANDRA; ZHU-Y; XU-LIXIAN, DRIEMEIER-CARLOS, DAI-JIAQI; ROJAS-ORLANDO; ISOGAI-AKIRA; WÅGBERG-LAR; HU-LIANGBING. Developing fibrillated cellulose as a sustainable technological material. Nature, v. 590, 2021, p. 47-56.https://doi.org/10.1038/s41586-020-03167-7

LIN-LONG; XU-FUQING; GE-XUMENG; LI-YEBO. Biological treatment of organic materials for energy and nutrients production - Anaerobic digestion and composting. En: GE-XUMENG, LI-YEBO; Advances in Bioenergy. Elsevier, 2019, 208 p.

MARATHE-SANDESH; JADHAV-SWATI; BANKAR-SANDIP; SINGHAL-REKHA. Enzyme-Assisted Extraction of Bioactives. En: PURI-MUNISH; Food Bioactives: Extraction and Biotechnology Applications. Springer, 2017, 326 p.

MARZO-C; DÍAZ-A; CARO-I; BLANDINO-A. Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Management & Research, v. 37, v. 2, 2019, p. 149-156. https://doi.org/10.1177/0734242x18798699

OLANBIWONINU-AFOLAKE; FASIKU-SAMUEL. Production of bacterial amylases and cellulases using sweet potato (Ipomoea batatas. (L.) Lam.) peels. African Journal of Biochemestry, v. 9, n. 9, 2015, p. 104–109. https://doi.org/10.5897/AJBR2015.0841

PANGSRI-PRAPAWAN; WUTTIPORNPUN-TEERADEJ; SONGSERM-WATCHARA. Mannanase and Cellulase Enzyme Production from the Agricultural Wastes by the Bacillus subtilis P2-5 Strain. Applied science and engineering progress, v. 14, n. 3, 2021, p. 425-434.https://doi.org/10.14416/j.asep.2020.05.002

PATELA-ANIL; SINGHANIA-REETA; SIM-SANG; PANDEY-ASHOK. Thermostable cellulases: Current status and perspectives. Bioresource Technology, v, 279, 2019, p. 385-392. https://doi.org/10.1016/j.biortech.2019.01.049

PORTERO-PATRICIA; BASTIDAS-BERNARDO; MARTÍN GIL-JESÚS; MARTÍN RAMOS-PABLO; CARVAJAL-ENRIQUE. Cellulosic Ethanol: Improving Cost Efficiency by Coupling Semi-Continuous Fermentation and Simultaneous Saccharification Strategies. Processes, v. 8, n. 11, 2020, p. 1-13. https://doi.org/10.3390/pr8111459

RAMAMOORTHY-NAVNIT KUMAR; SAMBAVI-T. R; SAHADEVAN-RENGANATHAN. Assessment of fed-batch strategies for enhanced cellulase production from a waste lignocellulosic mixture. Biochemical Engineering Journal, v. 152, 2019, p. 107387. https://doi.org/10.1016/j.bej.2019.107387

SÁNCHEZ-ETNA; HEREDIA-JUAN. Evaluación de residuos orgánicos generados en plazas de mercado para la producción de enzimas bacterianas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, v. 46, n. 180, 2022, p. 1-10.https://doi.org/10.18257/raccefyn.1652

SÁNCHEZ-ETNA; HEREDIA-JUAN; BUITRAGO-SONIA; MEDINA-JUAN PABLO. Aislamiento e identificación de microorganismos potencialmente amilolíticos y celulolíticos de suelos de humedales de Bogotá. Revista Colombiana de Biotecnología, v. 22, n. 1, 2020, p. 36-44. https://doi.org/10.15446/rev.colomb.biote.v22n1.71278

SARKAR-NIBEDITA; GHOSH-SUMANTA; BANNERJEE-SATARUPA; AIKAT-KAUSTAV. Bioethanol production from agricultural wastes: An overview. Renewable Energy, v. 37, n.1, 2012, p. 19-27. https://doi.org/10.1016/j.renene.2011.06.045

SILVA-A. F. V; SANTOS-L. A; VALENÇA-R. B; PORTO-T. S; SOBRINHO-M. D. M; GOMES-G. J. C; JUCA-J.F.T; SANTOS-A. F. M. S. Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate. Journal of Environmental Chemical Engineering, v.7, 2019, p. 103. https://doi.org/10.1016/j.jece.2019.103510

SINGH-ANITA; BAJAR-SOMVIR; DEVI-ARTI; PANT-DEEPAK. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports, v. 14, 2021, p. 1-13. https://doi.org/10.1016/j.biteb.2021.100652

SINGH-JAGRITI; KUNDU-DEBAJYOTI; DAS-MOHAN; BANERJE-RINTU. Enzymatic Processing of Juice from Fruits/Vegetables: An Emerging Trend and Cutting Edge Research in Food Biotechnology. En: KUDDUS-MOHAMMED; Enzymes in Food Biotechnology. Academic Press, 2019, 883 p.

SINGH- RAM SARUP; SINGH- TARANJEET; PANDEY- ASHOK. Microbial Enzymes—An Overview. En: RAM SARUP-SINGH, REETA RANI-SINGHANIA, ASHOK-PANDEY, CHRISTIAN-LARROCHE; Biomass, Biofuels, Biochemicals, Advances in Enzyme Technology. Elsevier, 2019, 510 p. https://doi.org/10.1016/B978-0-444-64114-4.00001-7

SINJAROONSAK-SANTAT; CHAIYASO-THANONGSAK; KITTIKUN-ARAN. Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus TC13W Using Low Cost Pretreated Oil Palm Empty Fruit Bunch. Waste and Biomass Valorization, v. 11, 2020, p. 3925-3936. https://doi.org/10.1007/s12649-019-00720-y

SOOCH-BALWINDER; LUGANI-YOGITA; SINGH-RAM. Agro-industrial lignocellulosic residues for the production of industrial enzymes. En: MUKESH-YADAV, VIKAS-KUMAR, NIRMALA-SEHRAWAT; Industrial Biotechnology: Plant Systems, Resources and Products. Gruyter STEM, 2019, 222 p. https://doi.org/10.1515/9783110563337-002

Unidad Administrativa Especial de Servicios Públicos. Plan de Gestión Integral de residuos sólidos- Documento Técnico de soporte. 2020. https://www.uaesp.gov.co/images/pgirs_mesas/DOCUMENTO%20TECNICO%20SOPORTE%20-%20DTS.pdf

VARGAS-PINEDA-OSCAR; TRUJILLO-GONZALEZ-JUAN; TORRES-MORA-MARCO. El compostaje, una alternativa para el aprovechamiento de residuos orgánicos en las centrales de abastecimiento. Orinoquia, v. 23. n.2, 2019, p 123-129. https://doi.org/10.22579/20112629.575

WAGHMARE-PANKAJKUMAR; PATIL-SWAPNIL; JADHAV-SANJIVANI; JEON-BYONG HUN; GOVINDWAR-SANJAY. Utilization of agricultural waste biomass by cellulolytic isolate Enterobacter sp. SUK-Bio. Agriculture and Natural Resources, v. 52, n. 5, 2018, p. 399-406.https://doi.org/10.1016/j.anres.2018.10.019

WALKLEY-A; BLACK-I. An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, v. 37, n. 1, 1934, p. 29-38.

Cómo citar
Sanchez Castelblanco, E. M., & Heredia Martín, J. P. (2022). Evaluación de microorganismos y sustratos obtenidos a partir de residuos orgánicos para la producción de celulasas. Biotecnología En El Sector Agropecuario Y Agroindustrial, 21(2), 50–61. https://doi.org/10.18684/rbsaa.v21.n2.2023.2165
Publicado
2022-11-16
Sección
Artículos de Investigaciòn
QR Code