Regulación de los niveles de glucosa mediante la inducción de extracto acuoso de Pseudoelephantopus spicatus.

  • Diofanor Acevedo Correa Docente Universidad del Sinú seccional Cartagena, Escuela de Nutrición y Dietética grupo GIND
  • Diana C. Mantilla Escalante Universidad Nacional Abierta y Distancia, Escuela de Ciencias básicas, Tecnología e Ingeniería, ECBTI, Cartagena de Indias, Bolívar.
  • Marlene Duran Lengua Universidad de Cartagena, Grupo de Investigación FARMABAC, Facultad de Medicina, Cartagena de Indias, Bolívar.
  • Guillermo González Vides Universidad de Cartagena, Grupo de Investigación FARMABAC, Facultad de Medicina, Cartagena de Indias, Bolívar.
  • Luis Eduardo Mendoza Góez Universidad de Cartagena, Grupo de Investigación FARMABAC, Facultad de Medicina, Cartagena de Indias, Bolívar.
Palabras clave: Pseudoelephantopus spicatus, Diabetes mellitus tipo 2, Fitofarmacología, Metformina, Amargón, Glucosa, Hipoglucemia, Farmacocinética, Salud pública, Compuestos bioactivos

Resumen

En la actualidad, el campo de la fitofarmacología ha demostrado el potencial antidiabético de varias plantas tradicionales, entre las que se encuentra el Pseudoelephantopus spicatus, sin embargo los estudios que demuestran el efecto hipoglucemiante de esta planata son poco conocidos. Por ello, en el presente estudio se evaluó su efecto regulador de la glicemia en un modelo de rata. Los experimentos se realizaron como prueba piloto y se validaron en una cinética de 0, 1, 2, 6 y 24 horas mediante cinco grupos experimentales (control, diabéticos inducidos con alloxan, diabéticos tratados con metformina y diabéticos tratados con extracto de Pseudoelephantopus spicatus con dosis de 250 y 500 mg/kg). Los tratamientos se aplicaron durante 1, 5 y 21 días. Los resultados demostraron que el alloxan a 120 mg/kg indujo la diabetes mellitus en el 100% de las ratas. El extracto a 250 y 500 mg/kg logró una reducción significativa de los niveles de glucosa en sangre en comparación con las ratas diabéticas, sin mostrar diferencias significativas entre las dosis. La reducción de los niveles de glucosa en sangre provocada por la metformina a 500 mg/kg y las distintas dosis del extracto no mostraron diferencias significativas. Según los resultados del estudio, el extracto de Pseudoelephantopus spicatus induce un efecto hipoglucémico en las ratas.

Descargas

Los datos de descargas todavía no están disponibles.

Asuntos:

revisión del artículo

Disciplinas:

compuestos bioactivos, Agricola, salud publica

Lenguajes:

Español

Referencias bibliográficas

ABU-ODEH, ALAA M.; WAMIDH. TALIB. Middle East Medicinal Plants in the Treatment of Diabetes: A Review. Molecules, v. 26, n. 3, 2021, p. 740-742.https://doi.org/10.3390/MOLECULES26030742.

ARAÚJO, LARISSA; SILVA, SARAH L.; GALVÃO, MARCOS; FERREIRA, MAGDA; ARAÚJO, EVANI; RANDAU, KARINA; SOARES, LUIZ. Total Phytosterol Content in Drug Materials and Extracts from Roots of Acanthospermum Hispidum by UV-VIS Spectrophotometry. Revista Brasilera de Farmacogenia, v. 23, 2013, p. 736-742.

ASDAQ, SYED-MOHAMMED-BASHEERUDDIN; LOKARAJA, ABDULHAKEEM; ALAMRI, WALAA; ALSANIE, MAJID-ALHOMRANI; ABDULRAHMAN, HADI-ALMUTIRI; SREEHARSHA, NAGARAJA; MOHD, IMRAN. Potential Interaction of Fresh Garlic with Metformin during Ischemia-Reperfusion Induced Cardiac Injury in Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, v. 4, 2021, 9739089. https://doi.org/10.1155/2021/9739089.

BACA, GERALDINDE; RAMÍREZ, MAYCI. Efecto cicatrizante del gel a base del extracto etanólico de las hojas Pseudoelephantopus spicatus (matapasto) en ratones albinos. Tesis para optar el título profesional de químico farmacéutico,2019.http://209.45.52.21/bitstream/handle/unid/45/9%20Baca%20Flores%20y%20Ramirez%20Nu%c3%b1ez.pdf?sequence=1&isAllowed=y

BARBER, THOMAS; STEFAN-KABISCH, HARPAL; RANDEVA, ANDREAS-PFEIFFER; MARTIN, WEICKERT. Implications of Resveratrol in Obesity and Insulin Resistance: A State-of-the-Art Review Nutrients 2022, v. 14, n. 14, 2022, p.2870.https://doi.org/10.3390/NU14142870.

BECKER, OLIVIA; GONSOROWSKI, AVA; SCHMIESING, CASANDRA. An Assessment of Surgical Weight Management Compared to Pharmacological Therapies for Treatment of Type 2 Diabetes. Northwestern Review, v. 1, 2023, p. 44-51.https://doi.org/researchprojects2023/44/.

CHAKI, RITUPARNA; NILANJAN, GHOSH; SUBHASH C., MANDAL. Phytopharmacology of Herbal Biomolecules. Herbal Biomolecules in Healthcare Applications, v. 1, 2022, p. 101–19. https://doi.org/10.1016/B978-0-323-85852-6.00026-3.

CHINSEMBU, KAZHILA C. Diabetes Mellitus and Nature’s Pharmacy of Putative Antidiabetic Plants. Journal of Herbal Medicine v. 15, 2019, 100230.https://doi.org/10.1016/J.HERMED.2018.09.001.

FIGUEROA, MARÍA DEL CONSUELO; RIVERA, MÓNICA; SOSA, ERIK; SAAVEDRA, FRANCISCO; MEJÍA, RICARDO. Perfil glicémico durante el ayuno en ratas macho-Wistar con diabetes tipo 2. Revista del Hospital Juárez de México, v. 83, 2016, p.23-30https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=68728.

GEBEREMESKEL, GENET-ALEM; YARED, GODEFA-DEBEBE; NIGISTY, ABRAHA-NGUSE. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella Foenum-Graecum L.) on Hyperlipidemia in Diabetic Patients. Journal of Diabetes Research. v. 5, 2019, 8507453.https://doi.org/10.1155/2019/8507453.

GILBERT, MATTHEW P.; RICHARD, PRATLEY. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Frontiers in Endocrinology, v. 11, 2020, p.178.https://doi.org/10.3389/FENDO.2020.00178.

GÓRAL, ILONA; KAMIL, WOJCIECHOWSKI. Surface Activity and Foaming Properties of Saponin-Rich Plants Extracts. Advances in Colloid and Interface Science, v. 279, 2020, 102145.https://doi.org/10.1016/J.CIS.2020.102145.

HAIDA, SARA; BAKKOUCHE, KALTOUM; KRIBII, ABDELAZIZ; KRIBII, ABDERAHIM. Chemical Composition of Essential Oil, Phenolic Compounds Content, and Antioxidant Activity of Cistus monspeliensis from Northern Morocco. Biochemistry research international, v. 2021, 6669877. https://doi.org/10.1155/2021/666987.

HUANG, ZI-RUI; LI-YUAN, ZHAO; FU-RONG, ZHU; YUN, LIU; JIAN-YONG, XIAO; ZHI-CHAO, CHEN; XU, CONG; YING, HUANG; BIN, LIU. Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous Vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods, v. 11, n. 7, 2022, p. 974.https://doi.org/10.3390/FOODS11070974/S1.

JAIN, SINGHAI. Comparative Study of Ethanol Extract of Leaves of Tephrosia Purpurea Pers and the Flavonoid Isolated for Hepatoprotective Activity. Indian Journal of Pharmaceutical Sciences v. 68, n. 6, 2006, p. 740.https://doi.org/10.4103/0250-474X.31006.

KANCHERLA, NAGARAJU; DHAKSHINAMOOTHI, ANUSHA; CHITRA, K; KOMARAM, RABI. Preliminary Analysis of Phytoconstituents and Evaluation of Anthelminthic Property of Cayratia auriculata (In Vitro). Maedica, v14, n4, 2019, p. 350–356. https://doi.org/10.26574/maedica.2019.14.4.350

KUMAR, SHUBHAM; ANU, MITTAL; DINESH, BABU; AMIT, MITTAL. Herbal Medicines for Diabetes Management and Its Secondary Complications. Current Diabetes Reviews, v. 17, n. 4, 2021, p. 437–456.https://doi.org/10.2174/1573399816666201103143225.

LANDINO, LISA; SHUCKROW, ZACHARY; MOONEY, ALEXANDER; LAUDERBACK, CLARE; LORENZI, KRIESTEN, Photo-oxidation and Photoreduction of Catechols by Chlorophyll Metabolites and Methylene Blue. Chemical Research in Toxicology, v. 35, n. 35, 2022, p.1851-1862.https://doi.org 10.1021/acs.chemrestox.2c00142

LO, CHIEN-PEN; LUCY, JU; YUNG, CHU. Qualitative Study of Color Reaction of Phosphomolybdic Acid. Industrial and Engineering Chemistry - Analytical Edition,v.16,n.10,1944,p.637.https://doi.org/10.1021/I560134A016/ASSET/I560134A016.FP.PNG_V03.

LÓPEZ-CASTILLO, NÉSTOR; ROJAS-RODRÍGUEZ, ALMA D.; PORTA, BRENDA M.; CRUZ-GÓMEZ, JAVIER. Process for the Obtention of Coumaric Acid from Coumarin: Analysis of the Reaction Conditions. Advances in Chemical Engineering and Science, v. 2013, n. 03, 2013, p. 195–201.https://doi.org/10.4236/ACES.2013.33025.

MA-QUANTAO, YAQI-LI; PENGFEI-LI, MIN-WANG; JINGKANG-WANG, ZIYAN-TANG; TING-WANG, LINGLONG-LUO; CHUNGUO, WANG; BAOSHENG, ZHAO. Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, v. 117, 2019, p. 1243-1246https://doi.org/10.1016/J.BIOPHA.2019.109138.

MACHADO, DOUGLAS; OLIVEIRA, ELOIZA; SILVA-VENTURA, SARA; FERNANDES VATTIMO, FATIMA. The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats. Nutrients, v. 14, n. 14, 2022, p. 2798.https://doi.org/10.3390/NU14142798.

MASTROTOTARO, LUCIA; RODEN, MICHAEL. Insulin Resistance and Insulin Sensitizing Agents. Metabolism: Clinical and Experimental, v. 125, 2021, 154892 https://doi.org/10.1016/J.METABOL.2021.154892.

PIVARI, FRANCESCA; MINGIONE, ALESSANDRA; BRASACCHIO, CATERINA; SOLDATI, LAURA. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients, v. 11, n. 8, 2019, p. 1837.https://doi.org/10.3390/NU11081837.

PRZYBYŁEK, MACIEJ. Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening. Molecules, v. 25, n. 24, 2020, p. 5942. https://doi.org/10.3390/MOLECULES25245942.

PUMALLANQUI, MAY LEE. SALAZAR, STEFANIA. Efecto antiulceroso del extracto etanólico de las hojas de Pseudelephantopus spicatus (mata pasto) en ratas albinas. Tesis para optar el título profesional de químico farmacéutico.2021.https://repositorio.uma.edu.pe/bitstream/handle/20.500.12970/499/EFECTO%20ANTIULCEROSO%20DEL%20EXTRACTO%20ETAN%c3%93LICO%20DE%20LAS%20HOJAS%20DE%20Pseudelephantopus%20spicatus%20%28Mata%20pasto%29%20EN%20RATAS%20ALBINAS.pdf?sequence=1&isAllowed=y

RAVI, BINDHU. Evaluation of Antidiabetic Potential of Oyster Mushroom (Pleurotus ostreatus) in Alloxan-Induced Diabetic Mice, v. 35, n. 1, 2012, p. 101–109.https://doi.org/10.3109/08923973.2012.710635.

SALEH, HAIDY; YOUSEF, MOHAMED; ABDELNASER, ANWAR. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Frontiers in Immunology, v.12, 2021, p. 606069.https://doi.org/10.3389/fimmu.2021.606069

SONG, QINGHE; LIU, JUNJUN; DONG, LIYUAN; WANG, XIAOLEI; ZHANG, XIANDANG. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy, v 140, 2021, p.111750.https://doi.org/10.1016/j.biopha.2021.111750.

XU, SUYUN; YANPING, WANG; JINJU, WANG; WEITAO, GENG. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, v. 11, n. 5, 2022, p. 754.https://doi.org/10.3390/FOODS11050754.

YEN, FOO; SHU-QIN, CHAN; TAN-SHI-XUAN, SHARRYL; JIA-YING, PUAH; YI-LE, HONG; DARMARAJAN, THIVIYA; GUNASEKARAN, BASKARAN; SALVAMANI, SHAMALA. Hypoglycemic Effects of Plant Flavonoids: A Review. Evidence-based Complementary and Alternative Medicine, 2021.https://doi.org/10.1155/2021/2057333.

ZARE, ROGHAYEH; AZADEH, NADJARZADEH; MOHAMMAD-MEHDI, ZARSHENAS; MESBAH, SHAMS, MOJTABA, HEYDARI. Efficacy of Cinnamon in Patients with Type II Diabetes Mellitus: A Randomized Controlled Clinical Trial. Clinical Nutrition, v. 38, n. 2, 2019, p. 549–56.https://doi.org/10.1016/J.CLNU.2018.03.003.

Cómo citar
Acevedo Correa, D., Mantilla Escalante, D., Duran Lengua, M., González Vides, G., & Mendoza Góez, L. E. (2023). Regulación de los niveles de glucosa mediante la inducción de extracto acuoso de Pseudoelephantopus spicatus. Biotecnología En El Sector Agropecuario Y Agroindustrial, 22(1), 40–52. https://doi.org/10.18684/rbsaa.v22.n1.2024.2244
Publicado
2023-08-30
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: