Efecto de la biofertilización sobre el crecimiento en maceta de plantas de caña de azúcar (saccharum officinarum)

  • Liliana Serna Cook Universidad Nacional de Colombia Sede Palmira
  • Camilo Arias Garcia Universidad Nacional de Colombia Sede Palmira
  • Leidy Jhoana Valencia Hernandez Universidad Nacional de Colombia Sede Palmira
Palabras clave: Caña de azúcar, Crecimiento, azospirillum brasilense, azobater chroccum, trchoderma lignrum.



The use of microorganisms as fertilizer has demonstrated beneficial effects on

plant growth and is an alternative to chemical fertilizers. However, each microor-

ganism has different beneficial effects. This study evaluated the effect of appiying

microorganism fertilizers, Azospirillum brasilense, Azotobacter chroccocum, and

Trichoderma lignorum on the growth ofpotted sugarcane plants var CC 934418.

Plant growth was measured in terms of stem diameter, stem and root length, and

the number ofieaves and roots 15, 30, and 45 days after planting. Plant growth

evidenced statistically significant differences among treatments. Microorganism 

fertilizers showed a positive effect on the growth of sugarcane plants, with

Azospirillum brasilense and Trichoderma lignorum as the microorganisms

that exercised the greatest effect on stem diameter, root systems, and plant

foliation. Beneficial effects of Trichoderma lignorum on ieaf growth were

observed. This is a new scientific contribution since this species has not

been reported as promoting plant growth.


Los datos de descargas todavía no están disponibles.



Referencias bibliográficas

WU, S.C., CA0, Z.H., LI, Z.9., CHEUN9, K.C. and W0N9, M.H. Effects of biofertilizer containing N-

fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial, 9eoderma., 125 (1-2), 2005,p.155–166.

NARULA, N., KUMAR, V., BEHL, R.K., DEUBEL, A., 9RANSEE, A. and MERBACH, W. Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions, J. Plant Nutr. Soil Sc., 163 (4), 2000, p. 393–398.

VESSEY, J.K. Plant growth promoting rhizobacteria as biofertilizers, Plant Soil., 255 (3), 2003, p. 571–586.

STURZ, A.V. and N0WAK, J. Endophytic commu- nities of rhizobacteria and the strategies re¢uired to create yield enhancing associations with crops, Appl. Soil. Ecol., 15 (2), 2000, p. 183–190.

NELS0N, L.M. Plant growth promoting rhizobac- teria (P9PR): prospects for new inoculants, Crop Manage., 2004.

B0ST0CK, R.M. Signal crosstalk and induced resistance: straddling the line between cost and Benefit, Annu. Rev. Phytopathol., 43, 2005, p. 545–580.

K0HLER, J., CARAVACA, F., CARRASC0, L. and R0LDÁN, A. Contribution of Pseudomonas mendocina and 9lomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions, Soil Use Manage., 22 (3), 2006, p. 298–304.

CHANDANIE, W.A., KUB0TA, M. and HYAKU- MACHI, M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fun- gus 9lomus mosseae and induction of systemic resistance to anthracnose disease in cucumber, Plant Soil., 286 (1-2), 2006, p. 209–217.

RAIMAM, M.P., ALBIN0, U., CRUZ, M.F., L0VAT0, 9.M., SPA90, F., FERRACIN, T.P., LIMA, D.S., 90ULART, T., BERNARDI, C.M., MIYAUCHI, M., N09UEIRA, M.A. and ANDRADE, 9. Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (9lomus clarum) in rice (0ryza sativa), Appl. Soil Ecol., 35 (1), 2007, p. 25–34.


R. Indole-3-acetic acid in microbial and microor- ganism-plant signaling, Fems Microbiol. Rev., 31 (4), 2007, p. 425–448.

DARDANELLI, M.S., et al. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress, Soil Biol. Biochem., 40 (11), 2008, p. 2713-2721.

HARMAN, 9.E., H0WELL, C.R., VITERB0, A., CHET, I. and L0RIT0, M. Trichoderma species– opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol., 2 (1), 2004, p. 43–56.


A. Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries, Biol. Control., 19 (2), 2000, p. 149–160.

LEWIS, J.A. and LUMSDEN, R.D. Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Tricho- derma spp, Crop Prot., 20 (1), 2001, p. 49–56.

R0C0, A. and PÉREZ, L.M. In vitro biocontrol activity of Trichoderma harzianum on Alternaria alternata in the presence of growth regulators, Electron. J. Biotechnol., 4 (2), 2001, p. 68–73.

PRASAD, R.D., RAN9ESHWARAN, R., HE9DE, S.V. and ANUR00P, C.P. Effect of soil and seed applica- tion of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions, Crop Prot., 21 (4), 2002, p. 293–297.

CLARKS0N, J.P., MEAD, A., PAYNE, T. and WHI- PPS, J.M. Effect of environmental factors and Scle- rotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma, Plant Pathol., 53 (3), 2004, p. 353–362.

ZAHRAN, H.H. Rhizobia from wild legumes: di- versity, taxonomy, ecology, nitrogen fixation and biotechnology, J. Biotechnol., 91 (2-3), 2001, p. 143–153.

R0DRI9UEZ-ECHEVARRÍA, S. and PÉREZ-FER- NÁNDEZ, M.A. Potential use of Iberian shrubby legumes and rhizobia inoculation in revegetation projects under acidic soil conditions, Appl. Soil. Ecol., 29 (2), 2005, p. 203–208.

VILLAR-SALVAD0R, P., VALLADARES, F., D0MÍN- 9UEZ-LERENA, S., RUIZ-DÍEZ, B., FERNÁNDEZ- PASCUAL, M., DEL9AD0, A. and PEÑUELAS, J.L. Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa: insights from a provenance, ferti- lization, and rhizobial inoculation study, Environ. Exp. Bot., 64 (2), 2008, p. 145–154.


V. Alteration of tomato fruit ¢uality by root inocu-lation with plant growth-promoting rhizobacteria (P9PR): Bacillus subtilis BEB-13bs, Sci. Hortic- Amsterdam., 113 (1), 2007, p. 103-106.


M. and SAHIN, F. The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu), Aust. J. Agr. Res., 54 (4), 2003, p. 377–380.


S.M. 9rowth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria, Microbiol. Res., 159 (4), 2004, p. 371–394.

PUENTE, M.E., LI, C.Y. and BASHAN, Y. Microbial populations and activities in the rhizoplane of rock- weathering desert plants. II. 9rowth promotion of cactus seedlings, Plant Biology., 6 (5), 2004, p. 643–650.

KIZILKAYA, R. Yield response and nitrogen con- centrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains, Ecol. Eng., 33 (2), 2008, p. 150-156.

URQUIA9A, S., CRUZ, K.H.S. and B0DDEY, R.M. Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen-balance estimates, Soil Sci. Soc. Am. J., 56 (1), 1992, p. 105–114.

9RIVET L, ARRUDA P. Sugarcane genomics: Depicting the complex genome of an important tropical crop, Curr. 0pin. Plant Biol., 5 (2), 2002, p. 122-127.

REIS, V., LEE, S. and KENNEDY, C., Biological nitrógeno fixation in sugarcane. In: Emerich C, Newton W.E. (ed.) Associative and Endophytic Nitrigen-Fixing Bacteria and Cyanobacterial As- sociations. Dordrecht, The Netherlands: Springer, 2007, p. 213-232.

MIRZA, M.S., AHMAD, W., LATIF, F., HAURAT, J., BALLY, R., N0RMAND, P. and MALIK, K.A. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (P9PB) on micro-propagated sugarcane in vitro, Plant Soil., 237 (1), 2001, p. 47–54.

SUMAN, A., SHASANY, A.K., SIN9H, M., SHAHI, H.N., 9AUR, A. and KHANUJA, S.P.S. Molecular assessment of diversity among endophytic diazo- trophs isolated from subtropical Indian sugarcane, World J. Microb. Biot., 17 (1), 2001, p. 39-45.

STAMF0RD, N.P., LIMA, R.A., LIRA JR., M.A. and SANT0S, C.R.S. Effectiveness of phosphate and potash rocks with Acidithiobacillus on sugarcane yield and their effects on soil chemical attribu- tes, World J. Microb. Biot., 24 (10), 2008, p.2061–2066.

RAMAMURTHY, V., NAIDU, L.9.K., RAMESH KUMAR, S.C., SRINIVAS, S. and HE9DE, R. Soil- based fertilizer recommendations for precision farming, Curr. Sci., 97 (5), 2009, p. 641-647.

SRINIVASRA0, C.H. and VITTAL, K.P.R. Emerging nutrient deficiencies in different soil types under rainfed production systems of India, Indian J. Fert., 3, 2007, p. 37–46.

SIN9H, S. and DATTA, P. 0utdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants, Plant Soil., 296 (1-2), 2007, p. 95-102,.

DUNNE, C., M0ËNNE-L0CC0Z, Y., MCCARTHY, J., HI99INS, P., P0WELL, J., D0WLIN9, D.N. and 09ARA, F. Combining proteolytic and phloroglu- cinol-producing bacteria for improved biocontrol of Pythium- mediated damping-off of sugar beet, Plant Pathol., 47 (3), 1998. p. 299–307.

SH0EBITZ, M., RIBAUD0, C.M., PARD0, M.A., CANT0RE, M.L., CIAMPI, L. and CURA, J.A. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere, Soil Biol Biochem., 41 (9), 2009, p. 1768–1774.

SENTHILKUMAR, M., 90VINDASAMY, V. and AN- NAPURNA, K. Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15, Curr Microbiol., 55 (1), 2007, p. 25–29.

RUSS0, A., VETT0RI, L., FELICI, C., FIASCHI, 9., M0RINI, S. and T0FFANIN, A. Enhanced micropro- pagation response and biocontrol effect of Azos- pirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants, J. Biotechnol., 134 (3-4), 2008, p. 312-319.

D0N0S0, E., L0B0S, 9A. and R0JAS, N. Efecto de Trichoderma harzianum y compost sobre el crecimiento de plántulas de Pinus radiata en vivero, Bos¢ue (Valdivia)., 29 (1), 2008, p. 52-57.

L0RIT0, M., W00, S.L. and SCALA, F. Le biotecno- logie utili alla difusa sostenibile delle piante: i fungí, Agroindustria., 3, 2004, p. 181–195.

SHUKLA, SK., YADAV, RL., SUMAN, A. and SIN9H, PN. Improving rhizospheric environment and su- garcane ratoon yield through bioagents amended farm yard manures in udic Ustochrept soil, Soil Till. Res., 99 (2), 2008, p. 158–168.

M0UTIA, J.F.Y., SAUMTALLY, S., SPAEPEN, S. and VANDERLEYDEN, J. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress, Plant Soil., 337, 2010, p. 233-242.


H.M. Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense, Commun. Soil Sci. Plant., 32 (13-14), 2001, p. 2177–2187.

MEHNAZ, S. and LAZAR0VITS, 9. inoculation effects of Pseudomonas putida, 9luconacetobac- ter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions, Microbial Ecol., 51 (3), 2006, p. 326-335.

RIBAUD0, C.M., KRUMPH0LZ, E.M., CASSÁN, F.D., B0TTINI, R., CANT0RE, M.L. and CURÁ, J.A. Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Invol- ves Ethylene, J. Plant 9rowth Regul., 25, 2006, p. 175–185,.

PEREYRA, M.A., BALLESTER0S, F.M., CREUS, C.M., SUELD0, R.J. and BARASSI, C.A. Seedlings growth promotion by Azospirillum brasilense under normal and drought conditions remains unaltered in Tebuconazole-treated wheat seeds, Eur. J. Soil Biol., 45 (1), 2009, p. 20-27.

RAVIKUMAR, S., KATHIRESAN, K., THADEDUS MARIA I9NATIAMMAL, S., BABU SELVAM, M. and SHANTHY, S. Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers., J. Exp. Mar. Biol. Ecol., 312 (1), 2004, p. 5–17.


Z. and MARZIAH, M. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ‘Berangan), Sci Hortic-Amster- dam., 126 (2), 2010, p. 80-87.

9AMAL-ELDIN, H. and ELBANNA, K. Field Evidence for the Potential of Rhodobacter capsulatus as Biofertilizer for Flooded Rice, Curr. Microbiol., 62 (2), 2010, p. 391-395.

REIN0, J.L., 9UERRER0, R.F., HERNÁNDEZ-9A- LÁN, R. and C0LLAD0, I.9. Secondary metabolites from species of the biocontrol agent Trichoderma, Phytochemistry Reviews., 7 (1), 2007, p. 89-123.

YADAV, R.L., SHUKLA, S.K., SUMAN, A. and SIN9H, P.N. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions, Biol. Fert. Soils., 45 (5), 2009, p. 461-468.

MEHB00B, I., NAVEED, M. and ZAHIR, Z.A. Rhizo- bial Association with Non-Legumes: Mechanisms and Applications, Cr. Rev. Plant Sci., 28 (6), 2009, p. 432–456.

VIJAYAN, K., CHAKRAB0RTI, S.P. and 9H0SH P.D. Foliar application of Azatobactor chroococcum increases leaf yield under saline conditions in mulberry (Morus spp.), Sci. Hortic-Amsterdam., 113 (3), 2007, p. 307-311.

SAXENA, A.K. and TILAK, K.V.B.R. Interaction among beneficial soil microorganisms, Indian J. Microbiol., 34, 1994, p. 91–106.

SUDHAKAR, P., CHATT0PADHYAY, 9.N., 9AN- 9WAR, SK. and 9H0SH, J.K. Effect of foliar appli- cation of Azotobacter, Azospirillum and Beijerinckia on leaf yield and ¢uality of mulberry (Morus alba), J Agr Sci., 134, 2000 (2), p. 227-234.

ASERI, 9.K., JAIN, N., PANWAR, J., RA0, A.V. and ME9HWAL, P.R. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert, Sci Hortic-Amsterdam., 117 (2), 2008, p. 130-135.

SASHIDHAR, B. and P0DILE, A.R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway glucose dehydrogenase, J Appl Micro- biol., 109 (1), 2010, p. 1-12.

90NZÁLEZ, R., LAUDAT, T., ARZ0LA, M., MÉNDEZ, R., MARRER0, P., PULID0, L.E., DIBUT, B. and L0RENZ0, J.C. Effect of Azotobacter chroococcum on in vitro pineapple plants growth during accli- matization, In Vitro Cell. Dev. B., 47 (3), 2010, p. 387-390.

Cómo citar
Serna Cook, L., Arias Garcia, C., & Valencia Hernandez, L. J. (2011). Efecto de la biofertilización sobre el crecimiento en maceta de plantas de caña de azúcar (saccharum officinarum). Biotecnología En El Sector Agropecuario Y Agroindustrial, 9(2), 85–95. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/786
Artículos originales
QR Code