Resistencia sistémica adquirida mediada por el ácido salicílico

  • Luz Nely Diaz Puentes Fundación Instituto de Estudios Avanzados – IDEA.
Palabras clave: Defensa, Planta, Patogenicidad, Patógeno, Ácido Jasmónico.

Resumen

La Resistencia SistémicaAdquirida (RSA)protege a la planta de una infección secundaria por patógenos biotróficos, necrotróficos y hemibiotróficos. La inducción de RSA ocurre en dos etapas, en una primera la planta reconoce el patógeno e induce las respuestas locales de defensa a través de cascadas de señalización que conllevan a la acumulación intracelular de Ácido Salicílico (AS). Esta acumulación induce el aumento de los niveles de Especies Reactivas del Oxígeno (ERO)y expresión de genes relacionados a la patogenicidad (rp). Esta respuesta local promueve la segunda etapa de RSA: inducción deresistencia en el tejido sistémico alejadodel punto de infección. Se cree que el Salicilato de Metilo(SaMe), algunas Quinasas Activadas por Mitógenos(QAM) y el Oxido Nítrico(ON), entre otros, pueden tener un papel relevante como señales inductoras de la resistencia sistémica. Enla RSA hay una estrecha relación entre el AS, el Ácido Jasmónico(AJ), las auxinas, el etileno y las proteínas RP1 y NPR1. La presente revisión describe los avances en el entendimiento de la señalización molecular para la inducción dela RSA mediada por el AS.   

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Luz Nely Diaz Puentes, Fundación Instituto de Estudios Avanzados – IDEA.
Ph.D.. Agricultura y Soberanía Alimentaria.

Referencias

BEDNAREK, P., KWON, C. and SCHULZE-LEFERT, P. Not a peripheral issue: secretion in plant-microbe interactions. Cur. Op. Pl. Bio., 13(4), 2010, p. 378-387.

DIAZ-PUENTES, L.-N. Interacciones moleculares entre plantas y microorganismos: saponinas como defensas químicas de las plantas y su tolerancia por los microorganismos. RET, 1(2), 2009, p. 31-54.

GLAZEBROOK, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopa., 43(1), 2005, p. 205-227.

MYSORE, K. and RYU, C. Nonhost resistance: how much do we know? Trends Pl. Sci., 9(2), 2004, p. 97-104.

THATCHER, L.F., ANDERSON, J.P. and SINGH, K.B. Plant defence responses: what have we learnt from Arabidopsis? Funct. Pl. Bio., 32(1), 2005, p. 1-19.

WIERMER, M., FEYS, B.J. and PARKER, J.E. Plant immunity: the EDS1 regulatory node. Cur. Op. Pl. Bio., 8(4), 2005, p. 383-389.

FLOR, H. Current status of gene-for-gene concept. Ann. Rev. Phytopa., 9(1), 1971, p. 275-296.

OH, C. and MARTIN, G.B. Effector-triggered immunity mediated by the Pto kinase. Trends Pl. Sci., 16(3), 2011, p. 132-140.

MAYER, A.M., STAPLESB, R.C. and GIL-AD, N.L. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58(1), 2001, p. 33-41.

BALLARÉ, C.L. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Pl. Sci., In Press, Corrected Proof(12), 2011,

PIETERSE, C.M., VAN WEES, S.C.M. and VAN LOON, L. Networking by small molecule hormones in plant immunity. Nat. Chem. Biol., 2009, p. 308-316.

VON DAHL, C.C. and BLADWIN, I. Deciphering the role of ethylene in plant-herbivore interactions. J. Pl. Grow. Reg., 26(1), 2007, p. 201-209.

GRANT, M. and LAMB, C. Systemic immunity. Curr. Op. Pl. Bio., 9(4), 2006, p. 414-420.

DURRANT, W.E. and DONG, X. Systemic acquired resistance. Ann. Rev. Phytopa., 42(1), 2004, p. 185-209.

STICHER, L., MAUCHMANI, B. and METRAUX, J.P. Systemic acquired resistance. Ann. Rev. Phytopa., 35(1), 1997, p. 235-270.

VALLAD, G.E. and GOODMAN, R.M. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci., 44(6), 2004, p. 1920-1934.

LIU, C.L., RUAN, Y., LIN, Z.J. and ISHII, H. Antagonism between acibenzolar-S-methyl-induced systemic acquired resistance and jasmonic acid-induced systemic acquired susceptibility to Colletotrichum orbiculare infection in cucumber. Physiological Mol. Plant Patho., 72(4-6), 2008, p. 141-145.

KOROLEV, N., DAVID, D.R. and ELAD, Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in A. thaliana. Biocontrol, 53(4), 2008, p. 667-683.

CHERN, M., CANLAS, P.E. and RONALD, P.C. Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain. Mol. Plant, 1(3), 2008, p. 552-559.

TORNERO, P., GADEA, J., CONEJERO, V. and VERA, P. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. MPMI, 10(5), 1997, p. 624-634.

WEIGEL, R.R., PFITZNER, U.M. and GATZ, C. Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. P. Cell, 17(4), 2005, p. 1279-1291.

FEYS, B.J., MOISAN, L.J., NEWMAN, M.A. and PARKER, J.E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO, 20(19), 2001, p. 5400-5411.

KUMAR, D. and KLESSIG, D.F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. PNAS, 100(26), 2003, p. 16101-16106.

NANDI, A., KROTHAPAILI, K., BUSEMAN, C.M. and SHAH, J. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. P. Cell, 15(10), 2003, p. 2383-2398.

SHAPIRO, A.D. and ZHANG, C. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. P. Physio., 127(3), 2001, p. 1089-1101.

VLOT, A.C., DEMPSEY, D.A. and KLESSIG, D.F. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopa., 47(1), 2009, p. 177-206.

LI, X., ZHANG, Y.L., CLARKE, J.D., LI, Y. and DONG, X.N. Identification and cloning of a negative regulator of systemic acquired resistance, SNlI1, through a screen for suppressors of npr1-1. Cell, 98(3), 1999, p. 329-339.

ANDREASSON, E., JENKINS, T., BRODERSEN, P. and MUNDY, J. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J., 24(14), 2005, p. 2579-2589.

"DESVEAUX, D., SUBRAMANIAM, R., DESPRES, C. and BRISSON, N. A """"whirly"""" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Develop. Cell, 6(2), 2004, p. 229-240."

HAYAT, Q., HAYAT, S., IRFAN, M. and AHMAD, A. Effect of exogenous salicylic acid under changing environment. Environ. Experim. Bota., 68(1), 2010, p. 14-25.

VLOT, A.C., KLESSIG, D.F. and PARK, S.W. Systemic acquired resistance: the elusive signal(s). Curr. Op. Pl. Bio., 11(4), 2008, p. 436-442.

HOWE, G.A. and JANDER, G. Plant immunity to insect herbivores. Ann. Rev. Pl. Bio., 59(1), 2008, p. 41-66.

SONG, J.T., KOO, Y.J., PARK, J.B., SEO, Y.J., CHO, Y.J., SEO, H.S. and CHOI, Y.D. The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Molecules and Cells, 28(2), 2009, p. 105-109.

FOROUHAR, F., YANG, Y., KUMAR, D. and TONG, L. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. PNAS, 102(5), 2005, p. 1773-1778.

BRODERSEN, P., PETERSEN, M., NIELSEN, H.B. and MUNDY, J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J., 47(4), 2006, p. 532-546.

NIDERMAN, T., GENETET, I., BRUYERE, T. and MOSINGER, E. Pathogenesis-related Pr-1 proteins are antifungal: isolation and characterization of 3 14-Kilodalton proteins of tomato and of a basic Pr-1 of tobacco with Inhibitory activity against P. Infestans. P. Physio., 108(1), 1995, p. 17-27.

JAULNEAU, V., CAZAUX, M., HOI, J.W.S. and DUMAS, B. Host and Nonhost Resistance in Medicago Colletotrichum Interactions. MPMI, 23(9), 2010, p. 1107-1117.

RIVIERE, M.P., MARAIS, A. and GALIANA, E. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1 -> 3)-glucanase activity at the onset of tobacco defence reactions. J. Exper. Bot., 59(6), 2008, p. 1225-1239.

CIPOLLINI, D., ENRIGHT, S. and BERGELSON, J. Salicylic acid inhibits jasmonic acid-induced resistance of A. thaliana to Spodoptera exigua. Mol. Ecol., 13(6), 2004, p. 1643-1653.

HORVATH, E., SZALAI, G. and JANDA, T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Pl. Grow. Reg., 26(2), 2007, p. 290-300.

KOORNNEEF, A., LEON-REYES, A., RITSEMA, T. and PIETERSE, C.M.J. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. P. Physio., 147(3), 2008, p. 1358-1368.

MUR, L.A.J., KENTON, P., ATZORN, R. and WASTERNACK, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Pl. Physio., 140(1), 2006, p. 249-262.

SCOTT, I.M., CLARKE, S.M., WOOD, J.E. and MUR, L.A.J. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. P. Physio., 135(2), 2004, p. 1040-1049.

WANG, D., PAJEROWSKA-MUKHTAR, K., CULLER, A.H. and DONG, X.N. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Bio., 17(10), 2007, p. 1784-1790.

YASUDA, M., ISHIKAWA, A., JIKUMARU, Y. and NAKASHITA, H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. P. Cell, 20(6), 2008, p. 1678-1692.

NEUENSCHWANDER, U., VERNOOIJ, B., FRIEDRICH, L. and RYALS, J. Is Hydrogen-Peroxide a 2nd-Messenger of Salicylic-Acid in Systemic Acquired-Resistance. Plant J., 8(2), 1995, p. 227-233.

LIU, P.P., YANG, Y., PICHERSKY, E. and KLESSIG, D.F. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. MPMI, 23(1), 2011, p. 82-90.

PARK, S.W., LIU, P.P., FOROUHAR, F. and KLESSIG, D.F. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J. Biol. Chem., 284(11), 2009, p. 7307-7317.

PARK, S.W., KAIMOYO, E., KUMAR, D. and KLESSIG, D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(1), 2007, p. 113-116.

ATTARAN, E., ZEIER, T.E., GRIEBEL, T. and ZEIER, J. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. P. Cell, 21(3), 2009, p. 954-971.

KOO, Y.J., KIM, M.A., KIM, E.H. and DO CHOI, Y. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in A. thaliana. P. Mol. Bio., 64(1-2), 2007, p. 1-15.

MALDONADO, A.M., DOERNER, P., DIXON, R.A. and CAMERON, R.K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 419(6905), 2002, p. 399-403.

TRUMAN, W., BENNETTT, M.H., KUBIGSTELTIG, I. and GRANT, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. PNAS, 104(3), 2007, p. 1075-1080.

VLOT, A.C., LIU, P.P., CAMERON, R.K. and KLESSIG, D.F. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in A. thaliana. Plant J., 56(3), 2008, p. 445-456.

GAUPELS, F., FURCH, A.C.U., WILL, T. and VAN BEL, A.J.E. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytolo., 178(3), 2008, p. 634-646.

PETERSEN, M., BRODERSEN, P., NAESTED, H. and MUNDY, J. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103(7), 2000, p. 1111-1120.

Cómo citar
Diaz Puentes, L. N. (2012). Resistencia sistémica adquirida mediada por el ácido salicílico. Biotecnología En El Sector Agropecuario Y Agroindustrial, 10(2), 257-267. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/813
Publicado
2012-12-01