Adición de Lactobacillus plantarum microencapsulado sobre parámetros intestinales, inmunes, productivos y bioquímica sanguínea en pollos

  • Henry Jurado Gámez Universidad de Nariño
  • Edward Zambrano Mora Universidad de Nariño
  • Catalina Fajardo Argoti Universidad de Nariño
Palabras clave: BAL, Broiler, In vivo, Probiótico, Lactobacillus plantarum

Resumen

El sector avícola presenta problemas sanitarios que disminuyen su productividad, por ello el objetivo fue evaluar el efecto de L. plantarum microencapsulado en pollo de engorde. Se valoraron las características del microencapsulado (viabilidad, eficiencia y variables físicas), los parámetros productivos (consumo de materia seca, ganancia de peso y conversión alimenticia), bioquímicos (colesterol, triglicéridos y proteínas totales) e histopalógicos en aves sometidas a cuatro tratamientos; dos testigos (sin probiótico y probiótico comercial) y dos con suministro de L. plantarum (con y sin microencapsular). Los resultados demostraron que la cepa tiene un crecimiento adecuado a diferentes condiciones gastrointestinales in vitro, que le da ventajas para atravesar el tracto gastrointestinal. Por otra parte, los resultados para el estudio in vivo demostró que el suministro de la bacteria láctica tienen efectos positivos sobre los parámetros productivos, aunque no se realizó una comparación con otros estudios debido a las condiciones particulares de la investigación. Se observó un incremento de los niveles de colesterol y triglicéridos con el suministro de la cepa probiótica, al igual que un incremento de las lesiones histopalógicas. L. plantarum microencapsulado tiene potencial como aditivo probiótico en el sector avícola, aunque debe mejorarse la investigación en la cantidad de inóculo a suministrar.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Ciencias Pecuarias

Lenguajes:

Español; Castellano

Biografía del autor/a

Henry Jurado Gámez, Universidad de Nariño

Ph.D en Ingeniería de Alimentos

Edward Zambrano Mora, Universidad de Nariño

M.Sc. Ciencias Agrarias

Catalina Fajardo Argoti, Universidad de Nariño

M.Sc (c) en Producción Animal.

Referencias bibliográficas

NKUKWANA, T. Global poultry production: Current impact and future outlook on the South African poultry industry. South African Journal of Animal Science, v. 48, n. 5, 2018, p. 869-884.

4314 / sajas.v48i5.7

SELL-KUBIAK, EWA; WIMMERS, KLAUS; REYER, HENRY; SZWACZKOWSKI, TOMASZ. Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: a review. Journal of applied genetics, v. 58, n. 4, 2017, p. 487-498.

1007/s13353-017-0392-7

GAO, PENGFEI; MA, CHEN; SUN, ZHENG; WANG, LIFENG; HUANG, SHI; SU, XIAQUAN; ZHANG, HEPING. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, v. 5 , n. 1, p. 91.

http://10.1186/s40168-017-0315-1

AGUNOS, AGENES; LÉGER, DAVID F.; CARSON, CAROLEE A.; GOW, SHERYL P.; BOSMAN, ANGELINA; IRWIN, REBECCA J.; REID-SMITH, RICHARD J. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015. PloS one, v. 12, n. 6, 2017, p. e0179384.

https://doi.org/10.1371/journal.pone.0179384

COYNE, LUC; ARIEF, RIANA; BENIGNO, CAROLYN; GIANG, VO-NGAN; HUONG, LUU-QUYNH, JEAMSRIPONG, SAHARUETAI; KALPRAVIDH, WANTANEE; MCGRANE, JAMES; PADUNGTOD, PAWIN; PATRICK, IAN; SCHOONMAN, LUUK; SETYAWAN, ERRY; SUKARNO, ADY-HARJA; SRISAMRAN, JUTANAT; NGOC, PHAM-THI; RUSHTON, JONATHAN. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics, v. 8, n. 1, 2019, p. 33-45.

https://doi.org/10.3390/antibiotics8010033

WU, ZINPING. Antimicrobial use in food animal production: situation analysis and contributing factors. Frontiers of Agricultural Science and Engineering, v. 5, n. 3, 2018, p. 301-311. https://doi.org/10.15302/J-FASE-2018207

HANG- PHAM, THI-THU; ROSSI, PIERRE; KHOA-DINH, HOANG-DANG; ANH-PHAM, NGOC-TU; ANH-TRAN, PHUONG; MUI-HO, OTHI-KHAI; TUC-DINH, QUOC; DE ALENCASTRO, LUIZ-FELIPPE. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam). Journal of environmental management, v. 214, 2018, p. 149-156.

https://doi.org/10.1016/j.jenvman.2018.02.089

GADDE, W.; KIM, W.; ILLEHOJ, HYUN S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal health research reviews, v. 18, n. 1, 2018, p. 26-45.

https://doi.org/10.1017/S1466252316000207

PLOEGMAKERS, I.B.; OLDE-DAMINK, S.W.; BREUKINK, S.O. Alternatives to antibiotics for prevention of surgical infection. British Journal of Surgery, v. 104, n. 2, 2017, p. e24-e33.

https://doi.org/10.1002/bjs.10426

FORD, ALEXANDER C.; HARRIS, LUCINDA, A.; LACY, BRIAN E.; QUIGLEY, EAMONN M.; MOAYYEDI, PAUL. Systematic review with meta‐analysis: the efficacy of prebiotics, probiotics, symbiotics and antibiotics in irritable bowel syndrome. Alimentary pharmacology & therapeutics, v. 48, n. 10, 2018, p. 1044-1060.

https://doi.org/10.1111/apt.15001

MARKOWIAK, PAULINA; ŚLIŻEWSKA, KATARZYNA. The role of probiotics, prebiotics and symbiotics in animal nutrition. Gut pathogens, v. 10, n. 1, 2018, p. 21-38.

http://10.1186/s13099-018-0250-0

DOWARAH, RUNJUN; VERMA, A.K.; AGARWAL, NEETA. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Animal Nutrition, v. 3, n. 1, 2017, p. 1-6.

https://doi.org/10.1016/j.aninu.2016.11.002

WANG, YONGWEI; DONG, ZHENGLIN; SONG, DAN; ZHOU, HANG; WANG, WEIWEI; MIAO, HAIJIANG; LI, AIKE; LI, WANG. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broiler chickens. Food and agricultural immunology, v. 29, n. 1, 2018, p. 859-869.

https://doi.org/10.1080/09540105.2018.1463972

BYAKIKA, STELLAH; MUKISA, IVAN-MUZIRA; BYARUHANGA, YUSUF-BYENKYA; MUYANJA, CHARLES. review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Reviews International, v. 5, n. 2, 2019, p. 1-40.

https://doi.org/10.1080/87559129.2019.1584815

GADDE, U; KIM, W.H.; OH, S.T; LILLEHOJ, HYUN. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal health research reviews, v. 18, n. 1, 2017, p. 26-45.

https://doi.org/10.1017/S1466252316000207

JURADO-GÁMEZ, HENRY; ORBES-VILLACORTE, ADRIANA-ELIZABETH; MESÍAS-PANTOJA, LAURA-NATHALY. Evaluation in vivo of Lactobacillus plantarum with probiotic characteristics by blood chemistry, immunohisto química and electron microscopy in Cavia porcellus. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 15, n. 2, 2017, p. 11-21.

http://dx.doi.org/10.18684/BSAA(15)11-21

JURADO-GÁMEZ, HENRY; JARRÍN-JARRÍN, VERONICA; BUSTAMANTE-MELO, JESÚS. Efecto bioconservante del sobrenadante de Lactobacillus plantarum y Lactobacillus lactis en lomo de cerdo (Longisimus dorsi). Revista de Medicina Veterinaria, v. 35, 2017 p. 159-173.

http://dx.doi.org/10.19052/mv.4399

RODRÍGUEZ, H; JIMENEZ, T. La microencpasulación. Revista veterinaria del Perú, v. 34, n. 2, 2018, p. 34-41.

COPPOLA-MENEZES, MARIO; GIL-TURNES, CARLOS. Probióticos e resposta imune. Ciência Rural, v. 34, n. 4, 2004, p. 1297-1303.

http://dx.doi.org/10.1590/S0103-84782004000400056

JUBB, K.; KENNEDY, PETER; PALMER, NIGER. Pathology of Domestic Animals. 6 ed. Washington (USA): Elsevier, Inc. 2016. 670 p.

https://doi.org/10.1016/B978-0-7020-2823-6.X5001-5

MONTES, LUZ; RODRÍGUEZ-BARONA, SNEYDER; GIRALDO, GLORIA. Encapsulación de alimentos probióticos mediante liofilización en presencia de prebióticos. Información tecnológica, v. 27, n. 6, 2010, p. 135-144.

http://dx.doi.org/10.4067/S0718-07642016000600014

CHEN, HAIYAN; LI, XIANGYI; LIU, BIENGJIE; MENG, XIANHONG. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, v. 29, 2017, p. 248-255. https://doi.org/10.1016/j.jff.2016.12.015

PARRA-HUERTAS, RICARDO-ADOLFO. Revisión: microencapsulación de alimentos. Revista Facultad Nacional de Agronomía, v. 63, n. 2, 2010, p. 5669-5684.

SAMEDI, LESLY; CHARLES, ALBERT-LINTON. Viability of 4 probiotic bacteria microencapsulated with arrowroot starch in the simulated Gastrointestinal Tract (GIT) and yoghurt. Foods, v. 8, n. 5, 2019, p. 175-183.

https://doi.org/10.3390/foods8050175

LIAO, LIANGKUN; XIAOYI,WEI; GONG, XIAO; LI, JIHUA; HUANG, TAO; XIONG, TAO. Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestion. LWT-food science and technology, v. 82, 2017, p. 82-89.

https://doi.org/10.1016/j.lwt.2017.03.065

DINKÇI, NAYIL; AKDENIZ, VILDAL; AKALIN, SIBEL A. Survival of probiotics in functional foods during shelf life. Food Quality and Shelf Life, v. 201, 2019, p. 345-350. https://doi.org/10.1016/B978-0-12-817190-5.00006-9

RAMOS, PHILIPPE E.; CERQUEIRA, MIGUEL A.; TEIXEIRA, JOSÉ A.; VICENTE, ANTONIO A. Physiological protection of probiotic microcapsules by coatings. Critical reviews in food science and nutrition, v. 58, n. 11, 2018, p. 1864-1877.

https://doi.org/10.1080/10408398.2017.1289148

MABELEBELE, M; NORRIS, D.; BROWN, D; GININDZA, M.M.; NGAMBI, J.W. Breed and sex differences in the gross anatomy, digesta pH and histomorphology of the gastrointestinal tract of Gallus gallus domesticus. Brazilian Journal of Poultry Science, v. 19, n. 2, 2017, p. 339-346.

https://doi.org/10.1590/1806-9061-2016-0275

MIN-JU,CHEN; HSINYU, TANG; MING-LUNG, CHIANG. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food microbiology, v. 66, 2017, p. 20-27.

https://doi.org/10.1016/j.fm.2017.03.020

MANES-LAZARO, R.; VAN DIEMEN, P.M.; PIN, C.; MAYER, M.J.; STEVENS, M.P. NARBAD, A. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota. British poultry science, v. 58, n. 4, 2017, p. 373-381.

https://doi.org/10.1080/00071668.2017.1307322

HOSSAIN, M.I.; SADEKUZZAMAN, MOHAMMAD; SAN-DO, HA. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food research international, v. 100, 2017, p. 63-73.

https://doi.org/10.1016/j.foodres.2017.07.077

MAJIDI-MOSLEH, A.; SADEGHI, A.A.; MOUSAVI, S.N.; CHAMANI, M.; ZAREI, A. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. British poultry science, v. 58, n. 1, 2017, p. 40-45.

https://doi.org/10.1080/00071668.2016.1237766

INATOMI, TAKIO; AMATATSU, MAASAKI; ROMERO-PÉREZ, GUSTAVO-ADOLFO; INOUE, RYO; TSUKAHARA, TAKAMITSU. Dietary probiotic compound improves reproductive performance of porcine epidemic diarrhea virus-infected sows reared in a japanese commercial swine farm under vaccine control condition. Frontiers in Immunology, v. 8, 2017, p. 1877-1883.

https://doi.org/10.3389/fimmu.2017.01877

Cómo citar
Jurado Gámez, H. ., Zambrano Mora, E. ., & Fajardo Argoti, C. . (2020). Adición de Lactobacillus plantarum microencapsulado sobre parámetros intestinales, inmunes, productivos y bioquímica sanguínea en pollos. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(1), 217–229. https://doi.org/10.18684/bsaa.v19.n1.2021.1502
Publicado
2020-12-29
Sección
Artículos de Investigaciòn
QR Code