Los sistemas agroforestales y la incidencia sobre el estatus hídrico en árboles de cacao

Palabras clave: Flujo de savia, Potencial hídrico, Disponibilidad de luz, Cobertura del dosel, cacao, agroforestales, hídrico


El cacao se cultiva bajo sistemas de producción como los agroforestales y libre exposición solar, su uso depende de las regiones agroecológicas donde se cultiva. El manejo del dosel de sombra incide en las condiciones microclimáticas que beneficia el comportamiento hídrico (flujo de savia Vs y potencial hídrico Ѱ) de la planta de cacao. Se evaluó como la modificación del dosel de sombra (sistemas a libre exposición solar SLE y agroforestales con media MPAR y baja BPAR radiación transmitida) afectan el comportamiento hídrico en árboles de cacao en épocas contrastantes de precipitación. Para medir el Vs y Ѱ se instalaron sensores de calor y psicrómetros de tallo en árboles de cacao tipo CCN51. Se encontró un efecto del sistema de producción y época de monitoreo sobre el Vs y Ѱ en las plantas de cacao. El comportamiento del Ѱ fue mayor en SLE en las dos épocas, pero se acentuó más en la época de mínima precipitación. Se encontró un comportamiento contrario en Vs, donde esta variable fue mayor en BPAR durante la época de mínima precipitación. De acuerdo con los resultados obtenidos el manejo de doseles de sombra en cultivos de cacao bajo climas subóptimos incide positivamente en el estatus hídrico.


La descarga de datos todavía no está disponible.

Referencias bibliográficas

CARR, M.K.V. and LOCKWOOD, G. The water relations and irrigation requirements of cocoa (Theobroma cacao L.) a review. Experimental Agriculture 47(04), 2011, p. 653-676.

SUÁREZ, J.C. Comportamiento ecofisiológico de Theobroma cacao L. en diferentes arreglos agroforestales bajo condiciones de la Amazonia Colombiana [Tesis Doctoral en Ciencias Biológicas]. Bogotá (Colombia): Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, 2018, 147 p.

HEBBAR, K.B., APSHARA, E., CHANDRAN, K.P. and PRASAD, P. V. Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.). International Journal of Biometeorology, 64(1), 2020, p. 47-57. doi: https://doi.org/10.1007/s00484-019-01792-0

JANANI, P., KUMAR, N. and JEGADEESWARI, V. Evaluation of cocoa (Theobroma cacao L.) clones under natural rainfed conditions for drought tolerance. Chemical Science Review and Letters 8 (32), 2019, p. 220-225

JANANI, P., KUMAR, N. and JEGADEESWARI, V. Dynamics of gas exchange and chlorophyll fluorescence parameters of cocoa genotypes in response to water deficit. Journal of Pharmacognosy and Phytochemistry, 8(6), 2019, p. 415-419

KUNIKULLAYA, A., SURESH, J., BALAKRISHNAN, S., KUMAR, M., JEYAKUMAR, P., KUMARAVADIVEL, N. and JEGADEESWARI, V. Effect of water stress on photosynthetic parameters of cocoa (Theobroma cacao L.) genotypes. International Journal of Chemical Studies, 6(6), 2018, p. 1021-1025.

ACHEAMPONG, K., DAYMOND, A.J., ADU-YEBOAH, P. and HADLEY, P. Improving field establishment of cacao (Theobroma cacao) through mulching, irrigation and shading. Experimental Agriculture, 2019, p. 1–15.

doi: doi:10.1017/S0014479718000479

NIETHER, W., SCHNEIDEWIND, U., ARMENGOT, L., ADAMTEY, N., SCHNEIDER, M. and GEROLD, G. Spatial-temporal soil moisture dynamics under different cocoa production systems. Catena 158, 2017,p. 340-349.

doi: https://doi.org/10.1016/j.catena.2017.07.011

GATEAU-REY, L., TANNER, E. V. J., RAPIDEL, B., MARELLI, J.P. and ROYAERT, S. Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE, 13(7), 2018, e0200454.

doi: https:// doi.org/10.1371/journal.pone.0200454.

SMITH, S.C. and UBILAVA, D. The El Niño Southern Oscillation and economic growth in the developing World. Global Environmental Change 45, 2017. p. 151–164.

doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.05.007

LAHIVE, F., HADLEY, P. and DAYMOND, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(5), 2019. doi: https://doi.org/10.1007/s13593-018-0552-0

GRANT, K., KREYLING, J., BEIERKUHNLEIN, C. and JENTSCH, A. Importance of Seasonality for the Response of a Mesic Temperate Grassland to Increased Precipitation Variability and Warming. Ecosystems, 20, 2017, p. 1454–1467.

doi: 10.1007/s10021-017-0122-3.

MEDINA, V. and LALIBERTE, B. A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L, and the role of genetic diversity to address climate change. Costa Rica: Bioversity International, 51, 2017, p. 1-59. Disponible: https://cgspace.cgiar.org/handle/10568/89084 [citado 6 de Mayo de 2020].

DE ALMEIDA, J., TEZARA, W. y HERRERA. Respuestas fisiológicas a la sequía y el déficit de agua experimental y el anegamiento de cuatro clones de cacao (Theobroma cacao L) seleccionados para el cultivo en Venezuela. Agricultural Water Management 171, 2016, p. 80–88. doi:https://doi.org/10.1016/j.agwat.2016.03.012

MOSER, G., LEUSCHNER, C., HERTEL, D., HӦLSCHER, D., KӦHLER, M., LEITNER, D., MICHALZIK, B., PRIHASTANTI, E., TJITROSEMITO, S. and SCHWENDENMANN, L. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 79(2), 2010, p. 171–187.

doi: https://doi.org/10.1007/s10457-010-9303-1

KOTOWSKA, M.M., HERTEL, D., RAJAB, Y.A., BARUS, H. and SCHULDT, B. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Frontiers in Plant Science 6, 2015, p. 1-16. doi: https://doi.org/10.3389/fpls.2015.00191

QUINTANA-FUENTES, L.F., GARCÍA-JEREZ, A. and MORENO-MARTÍNEZ, E. Perfil sensorial de cuatro modelos de siembra de cacao en Colombia. Entramado, 14(2), 2018, p. 256-268.

doi: http://dx.doi.org/10.18041/1900-3803/entramado.2.4756

KÖHLER, M., HANF, A., BARUS, H. and HÖLSCHER, D. Cacao trees under different shade tree shelter: effects on water use. Agroforestry systems, 88(1), 2014, p. 63-73.

doi: https://doi.org/10.1007/s10457-013-9656-3

NIETHER, W., ARMENGOT, L., ANDRES, C., SCHNEIDER, M. and GEROLD, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Annals of forest science, 75(38), 2018, p. 1-16.

doi: https://doi.org/10.1007/s13595-018-0723-9

BORDEN, K.A., ANGLAAERE, L.C., OWUSU, S., MARTIN, A.R., BUCHANAN, S.W., ADDO-DANSO, S.D. and ISAAC, M.E. Soil texture moderates root functional traits in agroforestry systems across a climatic gradient. Agriculture, Ecosystems & Environment, 295, 2020, p. 1-5. doi: https://doi.org/10.1016/j.agee.2020.106915

ABDULAI, I., VAAST, P., HOFFMANN, M.P., ASARE, R., JASSOGNE, L., VAN ASTEN, P. and GRAEFE, S. Cocoa agroforestry is less resilient to sub‐optimal and extreme climate than cocoa in full sun. Global change biology, 24(1), 2018, p. 273-286.

doi: https://doi.org/10.1111/gcb.13885

JIMÉNEZ-PÉREZ, A., CACH-PÉREZ, M.J., VALDEZ-HERNÁNDEZ, M. and DE LA ROSA-MANZANO, E. Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area. Botanical Sciences, 97(4), 2019, p. 701-710.

doi: https://doi.org/10.17129/botsci.2256

MENESES-BUITRAGO, D.H., BOLAÑOS-BENAVIDES, M.M., GÓMEZ-GIL, L.F. and RAMOS-ZAMBRANO, H.S. Evaluation of irrigation and pruning on the phenology and yield of Theobroma cacao L. Agronomía Mesoamericana, 30(3), 2019, p. 681-693.


BUNN, C., FERNANDEZ-KOLB, P., ASARE, R. and LUNDY, M. Climate Smart Cocoa in Ghana Towards climate resilient production at scale. CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) [online]. 2019. Disponible: https://cgspace.cgiar.org/handle/10568/103770 [citado 22 de Mayo de 2020].

MELGAREJO, L.M. Experimentos en fisiología vegetal. Universidad Nacional de Colombia. Bogotá (Colombia), 2010, p. 137-167. Disponible:http://bdigital.unal.edu.co/8545/2/02_Preliminares.pdf

FERREYRA, R., SELLES, G., MALDONADO, P., CELEDÓN, J. y GIL, P. Efecto del Clima, de las Características de la Hoja y de la Metodología de Medición en el Potencial Hídrico Xilemático en Palto (Persea americana Mill.). Agricultura Técnica, 67(2), 2007, p. 182-188.

CASSIANI, G., BOAGA, J., VANELLA, D., PERRI, M.T. and CONSOLI, S. Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences, 19(5), 2015, p. 2213-2225.

MINER, G.L., HAM, J.M. and KLUITENBERG, G.L. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agricultural and Forest Meteorology, 246, 2017, p. 86-97.

EPILA, J., MAES, W.H., VERBEECK, H., VAN CAMP, J., OKULLO, J.B.L., and STEPPE, K. Plant measurements on African tropical Maesopsis eminii seedlings contradict pioneering water use behaviour. Environmental and experimental botany, 135, 2017, p. 27-37.

SHUAI, F.U., SUN, L. and LUO, Y. Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China. Agroforestry Systems, 91(6), 2016, p. 1165-1180.

BURGESS, S.S.O., ADAMS, M.A., TURNER, N.C., BEVERLY, C.R, ONG, C.K., KHAN, A.A.H. and BLEBY, T.M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 2001, p. 589–598.


BURGESS, S.S.O., ADAMS, M.A., TURNER, N.C. and ONG, C.K. The redistribution soil water by tree root systems. Oecologia 115, 1998, p. 306–311. doi: http://dx.doi.org/10.1007/s004420050521.

DIXON, M. and DOWNEY, A. PSY1 Stem Psychrometer Manual. ICT International [online]. 2013. Disponible: http://www.ictinternational.com/content/uploads/2014/03/PSY1-manual-ver-4.7.pdf [citado 2 de Mayo de 2020].

DI RIENZO, J.A., CASANOVES, F., BALZARINI, M.G., GONZALEZ, L., TABLADA, M. and ROBLEDO, C.W. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. [online]. 2017. Disponible: http://www.infostat.com.ar [citado 8 de mayo de 2020].

ZHAO, C.Y., SI, J.H., FENG, Q., YU, T.F. and DU LI, P. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regulation, 82(2), 2017, p. 353-362.

XIA, J.B., ZHAO, Z.G., SUN, J.K., LIU, J.T. and ZHAO, Y.Y. Response of stem sap flow and leaf photosynthesis in Tamarix chinensis to soil moisture in the Yellow River Delta, China. Photosynthetica, 55, 2017, p. 368–377.

HE, Q.Y., YAN, M.J., MIYAZAWA, Y., CHEN, Q.W., CHENG, R.R., OTSUKI, K. and DU, S. Sap flow changes and climatic responses over multiple-year treatment of rainfall exclusion in a sub-humid black locust plantation. Forest Ecology and Management, 457, 117730, 2020.

doi: https://doi.org/10.1016/j.foreco.2019.117730

KÖHLER, M., DIERICK, D., SCHWENDENMANN, L. and HÖLSCHER, D. Water use characteristics of cacao and Gliricidia trees in an agroforest in Central Sulawesi, Indonesia. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 2(4), 2009, p. 520-529.

LUO, Z., GUAN, H., ZHANG, X., ZHANG, C., LIU, N. and LI, G. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. Journal of Hydrology: Regional Studies, 8, 2016, p. 1-9.

doi: https://doi.org/10.1016/j.ejrh.2016.08.001

CARMINATI, A. and JAVAUX, M. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought. Trends in Plant Science, TRPLSC 1962, 2020, p.1-13.

doi: https://doi.org/10.1016/j.tplants.2020.04.003

RODRIGUEZ‐DOMINGUEZ, C.M. and BRODRIBB, T.J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225(1), 2020, p. 126-134. doi: https://doi.org/10.1111/nph.16177

HAN, M., ZHANG, H., DEJONGE, K.C., COMAS, L.H. and GLEASON, S. Comparison of three crop water stress index models with sap flow measurements in maize. Agricultural Water Management, 203, 2018, p 366-375.

doi: https://doi.org/10.1016/j.agwat.2018.02.030

FENG, Y., CUI, N., DU, T., GONG, D., HU, X. and ZHAO, L. Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China. Agricultural water management, 194, 2017, p. 1-12.


DE OLIVEIRA, P.S., PEREIRA, L.S., SILVA, D.C., DE SOUZA JÚNIOR, J.O., LAVIOLA, B.G. and GOMES, F.P. Hydraulic conductivity in stem of young plants of Jatropha curcas L. cultivated under irrigated or water deficit conditions. Industrial Crops and Products, 116, 2018, p. 15-23.doi: https://doi.org/10.1016/j.indcrop.2017.12.066

LI, S. and JANSEN, S. The root cambium ultrastructure during drought stress in Corylus avellana. IAWA journal, 38(1), 2017, p. 67-80.

doi: https://doi.org/10.1163/22941932-20170157

HUGALDE, I.P. y VILA, H.F. Comportamiento isohídrico o anisohídrico en vides…. ¿Una controversia sin fin? [online]. 2014. Disponible:http://ria.inta.gob.ar/sites/default/files/trabajosenprensa/art.7hugalde-comportamiento.pdf [citado 30 de Mayo de 2020].

DENG, X., JOLY, R. and HAHN, D. The influence of plant water deficit on distribution of 14C-labelled assimilates in cacao seedlings. Annals of botany 66, 1990, p. 211–217. doi: https://doi.org/10.1093/oxfordjournals.aob.a088017

SCOFFONI, C., ALBUQUERQUE, C., BRODERSEN, C.R., TOWNES, S.V., JOHN, G.P., COCHARD, H. and SACK, L. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 213(3), 2017, p. 1076-1092.

doi: https://doi.org/10.1111/nph.14256.

WU, Y., ZHANG, Y., AN, J., LIU, Q. and LANG, Y. Sap flow of black locust in response to environmental factors in two soils developed from different parent materials in the lithoid mountainous area of North China. Trees, 32(3), 2018, p. 675-688:

doi: https://doi.org/10.1007/s00468-018-1663-6

ZHOU, H., SUN, Y., SHAN, G., GRANTZ, D.A., CHENG, Q., LAMMERS, P.S. and CHEN, B. In situ measurement of stem water content and diurnal storage of an apricot tree with a high frequency inner fringing dielectric sensor. Agricultural and Forest Meteorology, 250, 2018, p. 35-46.

DAMM, A., PAUL-LIMOGES, E., HAGHIGHI, E., SIMMER, C., MORSDORF, F., SCHNEIDER, F. D. and RASCHER, U. Remote sensing of plant-water relations: An overview and future perspectives. Journal of plant physiology, 227, 2018, p. 3-19.

DA SILVA-RIBEIRO, G. and BBUD-RIGHI, C. Canopy architecture of an agroforestry system: initial evaluation of a waveform system. Agroforest Syst 94, 2020, p. 487–498.

doi: https://doi.org/10.1007/s10457-019-00415-2

Cómo citar
Ordoñez Espinosa , C. M., Suárez Salazar , J. C., Rangel Churio , J. O., & Saavedra Mora, D. (2020). Los sistemas agroforestales y la incidencia sobre el estatus hídrico en árboles de cacao. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(1), 256-267. https://doi.org/10.18684/bsaa.v19.n1.2021.1623
Artículos de Investigaciòn

Más sobre este tema