Evaluación de la bioaccesibilidad de cadmio en formulaciones de chocolatería por digestión gastrointestinal in vitro

  • Cristian J. Murillo-Méndez Universidad Industrial de Santander
  • Daniel Ricardo Molina-Velasco Universidad Industrial de Santander
  • Luis Javier López-Giraldo Universidad Industrial de Santander
  • Ana Milena Salazar-Beleño Instituto Universitario de la Paz
Palabras clave: Cacao, Cadmio, Bioaccesibilidad, Digestión gastrointestinal, Grasa, Leche, Digestión pancreática, Modelo matemático, Superficie de respuesta, Valor mínimo

Resumen

Para estudiar la toxicidad del cadmio (Cd) presente en productos de chocolate es necesario conocer su concentración total y determinar la cantidad de Cd que es bioaccesible en el cuerpo humano. Este trabajo se enfocó en evaluar la bioaccesibilidad de Cd en formulaciones de chocolatería con concentraciones de componentes diferentes por digestión gastrointestinales in vitro. Esta digestión se realizó a través de un titulador automático con control de temperatura, y control y monitoreo de pH mediante soluciones diluidas ácidas y alcalinas. Se correlacionaron las diferencias de bioaccesibilidad con los componentes principales (cacao, leche, azúcar y contenido de Cd total en el cacao) y, por último, se propuso una formulación de chocolate que tuvo el menor valor de bioaccesibilidad de Cd. Los resultados se expresaron mediante un modelo matemático, con predicciones de 94 % y errores de validación del modelo menores que 9 %. Se obtuvieron valores de bioaccesibilidad de Cd en las formulaciones de chocolate entre 7 y 32 % aproximadamente, donde los valores más bajos correspondieron a formulaciones de chocolate amargo (relación másica cacao:azúcar de 7:2). Se concluyó que el contenido de cacao y de azúcar en la formulación disminuyen los valores de bioaccesibilidad de Cd, mientras que el contenido de leche y la concentración de Cd total en el cacao aumentan los valores de bioaccesibilidad.

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

ABT, EILEEN; SAM, JENNIFER-FONG; GRAY, PATRICK; ROBIN, LAUREN POSNICK. Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, v. 11, n. 2, 2018, p. 92–102.https://doi.org/10.1080/19393210.2017.1420700

ABT, EILEEN; ROBIN, LAUREN-POSNICK. Perspective on Cadmium and Lead in Cocoa and Chocolate. Journal of Agricultural and Food Chemistry, v. 68, n. 46, 2020, p. 13008–13015.https://dx.doi.org/10.1021/acs.jafc.9b08295

ALVES, RICARDO N.; MAULVAULT, ANA L.; BARBOSA, VERA L.; FERNANDEZ-TEJEDOR, MARGARITA; TEDIOSI, ALICE; KOTTERMAN, MICHIEL; VAN DEN HEUVEL, FREDERICUS H.M.; ROBBENS, JOHAN; FERNANDES, JOSÉ O.; RASMUSSEN, RIE-ROMME; SLOTH, JENS J.; MARQUES, ANTÓNIO. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chemistry, v. 267, 2018, p. 15-27.https://doi.org/10.1016/j.foodchem.2017.11.045

ARÉVALO-GARDINI, ENRIQUE; ARÉVALO-HERNÁNDEZ, CESAR O.; BALIGAR, VIRUPAX C.; HE, ZHENLI L. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, v. 605-606, 2017, p. 792-800.http://dx.doi.org/10.1016/j.scitotenv.2017.06.122

BARRAZA, F.; SCHRECK, E.; LÉVEQUE, T.; UZU, G.; LÓPEZ, F.; RUALES, J.; PRUNIER, J.; MARQUET, A.; MAURICE, L. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, v. 229, 2017, p. 950-963.http://dx.doi.org/10.1016/j.envpol.2017.07.080

BARRAZA, FIORELLA; SCHRECK, EVA; UZU, GAËLLE; LÉVEQUE, THIBAUT; ZOUITEN, CYRIL; BOIDOT, MATHIEU; MAURICE, LAURENCE. Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research, v. 192, 2021, p. 110241. https://doi.org/10.1016/j.envres.2020.110241

BHAT, ZUHAIB F.; MORTON, JAMES D.; MASON, SUSAN L.; BEKHIT, ALAA EL-DIN A.; MUNGUREB, TANYARADZWA E. Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Research International, v. 120, 2018, p. 793-799. https://doi.org/10.1016/j.foodres.2018.11.040

CHAPARRO-ACUÑA, SANDRA-PATRICIA; VARGAS-MORENO, PAOLA-ANDREA; SILVA-GÓMEZ, LEONARDO-ANDRÉS; CÁRDENAS, OSWALDO-ELIÉCER. Cadmium voltametric quantification in table chocolate produced in Chiquinquira-Boyaca, Colombia. Acta Agronómica, v. 66, n. 2, 2017, p. 172-177.http://dx.doi.org/10.15446/acag.v66n2.5847

DE OLIVEIRA, VINICIUS-HENRIQUE; ULLAH, IHSAN; DUNWELL, JIM M.; TIBBETT, MARK. Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicology and Environmental Safety, v. 202, 2020, p. 110917.https://doi.org/10.1016/j.ecoenv.2020.110917

ECHEVERRY, A.; REYES, H. Determinación de la concentración de cadmio en un chocolate colombiano con 65 % de cacao y chocolates extranjeros con diferentes porcentajes de cacao. Entre Ciencia e Ingeniería, v. 19, 2016, p. 22-32.https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/452

FEBRIANTO, NOOR-ARIEFANDIE; XHU, FAN. Changes in the Composition of Methylxanthines, Polyphenols, and Volatiles and Sensory Profiles of Cocoa Beans from the Sul 1 Genotype Affected by Fermentation. Journal of Agricultural and Food Chemistry, v. 68, n. 32, 2020, p. 8658-8675.https://dx.doi.org/10.1021/acs.jafc.0c02909

FRANCISCO, JOÃO; CARDOSO, CARLOS; BANDARRA, NARCISA; BRITO, PEDRO; HORTA, ANDRÉ; PEDROSA, RUI; GIL, MARIA M.; DELGADO, INÉS-MARGARIDA; CASTANHEIRA, ISABEL; AFONSO, CLÁUDIA. Bioaccessibility of target essential elements and contaminants from Fucus spiralis. Journal of Food Composition and Analysis, v. 74, 2018, p. 10-17. https://doi.org/10.1016/j.jfca.2018.08.003

GRAMLICH, A.; TANDY, S.; ANDRES, C.; CHINCHEROS-PANIAGUA, J.; ARMENGOT, L.; SCHNEIDER, M.; SCHULIN, R. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of The Total Environment, v. 580, 2017, p. 677-686.http://dx.doi.org/10.1016/j.scitotenv.2016.12.014

GRAMLICH, A.; TANDY, S.; GAUGGEL, C.; LÓPEZ, M.; PERLA, D.; GONZALEZ, V.; SCHULIN, R. Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, v. 612, 2018, p. 370-378.http://dx.doi.org/10.1016/j.scitotenv.2017.08.145

GÜLTEKIN-ÖZGÜVEN, MINE; BERKTAŞ, IJLAL; ÖZÇELIK, BERAAT. Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, v. 72, 2016, p. 559-565.https://doi.org/10.1016/j.lwt.2016.04.065

HERNÁNDEZ-MARTÍNEZ, RAQUEL; NAVARRO-BLASCO, IÑIGO. Estimation of dietary intake and content of lead and cadmium in infant cereals marketed in Spain. Food Control, v. 26, n. 1, 2012, p. 6-14.https://doi.org/10.1016/j.foodcont.2011.12.024

INTERNATIONAL COCOA ORGANIZATION. Quarterly Bulletin of Cocoa Statistics Cocoa Year 2016/17. Quarterly Bulletin of Cocoa Statistics, v. 43, n. 1, 2019, p. 1-147.

KASA, NURSU-AYLIN; BÜYÜKPINAR, ÇAĞDAŞ; ERULAŞ, AHMET-FATIH; BAKIRDERE, SEZGIN. A sensitive and accurate analytical method for the determination of cadmium in food samples: Molybdenum coated T-shape slotted quartz tube flame atomic absorption spectrophotometry. Food Chemistry, v. 319, 2020, p. 126572.https://doi.org/10.1016/j.foodchem.2020.126572

LEWIS, CALEB; LENNON, ADRIAN M.; EUDOXIE, GAIUS; SIVAPATHAM, PARAMASIVAM; UMAHARAN, PATHMANATHAN. Plant metal concentrations in Theobroma cacao as affected by soil metal availability in different soil types. Chemosphere, v. 262, 2021, p. 127749.https://doi.org/10.1016/j.chemosphere.2020.127749

LO DICO, GIANLUIGI-MARIA; GALVANO, FABIO; DUGO, GIACOMO; D'ASCENZI, CARLO; MACALUSO, ANDREA; VELLA, ANTONIO; GIANGROSSO, GIUSEPPE; CAMMILERI, GAETANO; FERRANTELLI, VINCENZO. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, v. 245, 2018, p. 1163-1168.https://doi.org/10.1016/j.foodchem.2017.11.052

MARTINI, SERENA; CONTE, ANGELA; TAGLIAZUCCHI, DAVIDE. Bioaccessibility, bioactivity and cell metabolism of dark chocolate phenolic compounds after in vitro gastro-intestinal digestion. Journal of Functional Foods, v. 49, 2018, p. 424-436. https://doi.org/10.1016/j.jff.2018.09.005

MINEKUS, M.; ALMINGER, M.; ALVITO, P.; BALANCE, S. A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, v. 5, n. 6, 2014, p. 1113-1124.https://doi.org/10.1039/C3FO60702J

MOUNICOU, S.; SZPUNAR, J.; ANDREY, D.; BLAKE, C.; LOBINSKI, R. Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Additives and Contaminants, v. 20, n. 4, 2003, p. 343-352.http://dx.doi.org/10.1080/0265203031000077888

PEIXOTO, RAFAELLA R.A.; DEVESA, VICENTA; VÉLEZ, DINORAZ; CERVERA, M. LUISA; CADOREA, SOLANGE. Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder. Journal of Food Composition and Analysis, v. 48, 2016, p. 41-47.http://dx.doi.org/10.1016/j.jfca.2016.02.002

PEIXOTO, RAFAELLA R.A.; OLIVEIRA, ANDREA; CADORE, SOLANGE. Risk assessment of cadmium and chromium from chocolate powder. Food Additives & Contaminants: Part B, v. 11, n. 4, 2018, p. 256–263.https://doi.org/10.1080/19393210.2018.1499676

PICO-HERNÁNDEZ, SERGIO M.; JAIMES-ESTÉVEZ, JAIME; LÓPEZ-GIRALDO, LUIS J.; MURILLO-MÉNDEZ, CRISTIAN J. Supercritical extraction of bioactive compounds from Cocoa husk: study of the main parameters. Revista Facultad de Ingeniería Universidad de Antioquia, v. 91, 2019, p. 95-105.http://dx.doi.org/10.17533/udea.redin.n91a09

RECKNAGEL, SEBASTIAN; KOCH, MATTHIAS; KÖPPEN, ROBERT; BUTTLER, SABINE; PENK, SIBYLLE; MAUCH, TATJANA; SOMMERFELD, THOMAS; WITT, ANGELIKA. Development of certified reference materials for the determination of cadmium and acrylamide in cocoa. Analytical and Bioanalytical Chemistry, v. 412, n. 19, 2020, p. 4659-4668.https://doi.org/10.1007/s00216-020-02719-0

SATARUG, SOISUNGWAN; VESEY, DAVID A.; GOBE, GLENDA C. Current health risk assessment practice for dietary cadmium: Data from different countries. Food and Chemical Toxicology, v. 106, 2017, p. 430-445.https://doi.org/10.1016/j.fct.2017.06.013

TORO-URIBE, SAID; LÓPEZ-GIRALDO, LUIS-JAVIER; ALVAREZ-RIVERA, GERARDO; IBÁÑEZ, ELENA; HERRERO, MIGUEL. Insight of Stability of Procyanidins in Free and Liposomal Form under an in Vitro Digestion Model: Study of Bioaccessibility, Kinetic Release Profile, Degradation, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, v. 67, n. 7, 2019, p. 1990-2003.https://pubs.acs.org/doi/10.1021/acs.jafc.9b00351

VILLAMIZAR-JAIMES, ARLEY-RENÉ; LÓPEZ-GIRALDO, LUIS-JAVIER. Cáscara de cacao fuente de polifenoles y fibra: simulación de una planta piloto para su extracción. Respuestas, v. 22, n. 1, 2017, p. 75-83.https://doi.org/10.22463/0122820X.821

ZHUANG, PING; ZHANG, CHAOSHENG; LI, YINGWEN; ZOU, BI; MO, HUI; WU, KEJUN; WU, JINGTAO; LI, ZHIAN. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test. Food Chemistry, v. 213, 2016, p. 206-214.http://dx.doi.org/10.1016/j.foodchem.2016.06.066

Cómo citar
Murillo-Méndez, C. J., Molina-Velasco, D. R., López-Giraldo, L. J., & Salazar-Beleño, A. M. (2021). Evaluación de la bioaccesibilidad de cadmio en formulaciones de chocolatería por digestión gastrointestinal in vitro. Biotecnología En El Sector Agropecuario Y Agroindustrial, 1-18. https://doi.org/10.18684/bsaa.v.n.2022.1746
Publicado
2021-09-02
Sección
Artículos de Investigaciòn

Más sobre este tema