Efecto de la aplicación de biochar en la actividad microbiana en suelos: Revisión

  • Harold Andrés Melo Lozano 0000-0002-8687-6550
  • Natalia Afanasjeva Universidad del Valle
Palabras clave: crecimiento vegetal, enmienda, biocarbón, enzimas, micorrizas, rizobacterias, Porosidad, Simbiosis, Comunidad microbiana, Enmienda del suelo

Resumen

El biochar (BC) se presenta como una enmienda para suelos a partir del residuo de pirólisis de biomasa, que promueve el incremento de las comunidades bacterianas y micorrícicas benéficas y de nutrientes elementales para la fertilidad vegetal; por sus características, aporta carbono recalcitrante, genera cambios fisicoquímicos positivos como el incremento del pH, el aumento de la retención de agua en suelo y en la capacidad de intercambio catiónico. La mayoría de los artículos sobre BC se enfocan en evaluar los resultados de variables fisicoquímicas del suelo, sin embargo, son escasos los estudios que expliquen cómo y porqué el BC incrementa las comunidades microbianas benéficas para el crecimiento vegetal, razón por la cual es necesario analizarlos selectivamente para definir las causas y los efectos de la interacción entre el BC y los microorganismos del suelo. Esta revisión examina publicaciones de los últimos 12 años de investigación sobre el BC en diferentes bases de datos (ScienceDirect, Scopus, Springerlink, SciELO, Google Scholar), enfocándose en los años (2020-2022), con el fin de elucidar los mecanismos subyacentes que permiten la interacción entre BC-comunidades microbianas del suelo y sus beneficios como enmienda agrícola. La hipótesis aceptada es que la alta porosidad del BC que puede servir como “microhábitat” permite las condiciones ideales de espacio, temperatura, humedad y alimento para alterar los niveles de rizobacterias y hongos micorrícicos involucrados en la solubilización de nutrientes como N, P y K aumentando los niveles exo-enzimáticos de deshidrogenasa, β-glucosidasa, ureasa entre otras, mejorando la fertilidad del suelo y el crecimiento de plantas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

AALIPOUR, HAMED; NIKBAKHT, ALI; ETEMADI, NEMATOLLAH; MACDONALD, JOANNE. Co-inoculation of Arizona cypress with mycorrhizae and rhizobacteria affects biomass, nutrient status, water-use efficiency, and glomalin-related soil protein concentration. Urban Forestry & Urban Greening, v. 60, 2021, p. 127050.https://doi.org/10.1016/j.ufug.2021.127050

ABBASPOUR, ALI; ZOHRABI, FARSHAD; DOROSTKAR, VAJIHEH; FAZ, ANGEL; ACOSTA, JOSE A. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae. Journal of Environmental Management, v. 254, 2020, p. 109755. https://doi.org/10.1016/j.jenvman.2019.109755

ACOSTA-MARTÍNEZ, VERÓNICA; PÉREZ-GUZMÁN, LUMARIE; JOHNSON, JANE, M. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Applied Soil Ecology, v. 142, 2019 p. 72–80.https://doi.org/10.1016/j.apsoil.2019.05.001

AMELOOT, N.; GRABER, E.R.; VERHEIJEN, F.G.A.; DE NEVE, S. Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, v. 64, n. 4, 2013, p. 379–390.https://doi.org/10.1111/ejss.12064

AMOAH-ANTWI, COLLINS; KWIATKOWSKA-MALINA, JOLANTA; THORNTON, STEVEN F.; FENTON, OWEN; MALINA, GRZEGORZ; SZARA, EWA. Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, v. 722, 2020, p. 137852.https://doi.org/10.1016/j.scitotenv.2020.137852

ANAND, ABHIJEET; KUMAR, VIVEK; KAUSAL, PRIYANKA. Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, v. 156, 2022, p. 111959.https://doi.org/10.1016/j.rser.2021.111959

ANDERSON, CRAIG R.; CONDRON, LEO M.; CLOUGH, TIM J.; FIERS, MARK; STEWART, ALISON; HILL, ROBERT A.; SHERLOCK, ROBERT R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen, and phosphorus. Pedobiologia, v. 54, 2011, p. 309–320.https://doi.org/10.1016/j.pedobi.2011.07.005

ANTAR, MOHAMMED; LYU, DONGMEI; NAZARI, MAHTAB; SHAH, ATEEQ; ZHOU, XIAOMIN; SMITH, DONALD L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, v. 139, 2021, p. 110691. https://doi.org/10.1016/j.rser.2020.110691

ANTOR, NAZMUL; SHAMIM, MIA; HASAN, MD; LIPI, NOWROSE; JINDO, KEIJI; SANCHEZ-MONEDERO, MIGUEL; RASHID, MD. Chemical and biological activation of biochar favors N immobilization in biochar and its release to plant. Pedosphere, 2022, p. 1-16. https://doi.org/10.1016/j.pedsph.2022.06.050

BHATTACHARYYA, SIDDARTHA-SHANKAR; LEITE-DORILEO, FERNANDA-FIGUEIREDO; FRANCE, CASEY L.; ADEKOYA, ADETOMI O.; ROS, GERARD H.; DE VRIES, WIM; MELCHOR-MARTÍNEZ, ELD M.; IQBAL, HAFIZ M.; PARRA-SALDÍVAR, ROBERTO. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Science of The Total Environment, v. 826, 2022, p. 154161.https://doi.org/10.1016/j.scitontev.2022.154161

CAYUELA, MARIA-LUZ; SÁNCHEZ-MONEDERO, MIGUEL-ANGEL; ROIG, ASUNCIÓN; HANLEY, KELLY; ENDERS, AKIO; LEHMANN, JOHANNES. Biochar and denitrification in soils: ¿When, how much and why does biochar reduce N2O emissions?. Scientific Reports, v. 3, 2013, p. 1732.https://doi.org/10.1038/srep01732

CHIAPPERO, MARCO; NOROUZI, OMID; HU, MINGYU; DEMICHELIS, FRANCESCA; BERRUTI, FRANCO; DI MARIA, FRANCESCO; MAŠEK, ONDREJ; FIORE, SILVIA. Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, v. 131, 2020, p. 110037.https://doi.org/10.1016/j.rser.2020.110037

CUI, QIAN; XIA, JIANGBAO; YANG, HONGJUN; LIU, JINGTAO; SHAO, PENGSHUAI. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Science of The Total Environment, v. 756, 2020, p. 143801.https://doi.org/10.1016/j.scitotenv.2020.143801

CYBULAK, MARTA; SOKOŁOWSKA, ZOFIA; BOGUTA, PATRYCJA. The influence of biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids. Scientific Reports, v. 11, 2021, p. 5698.https://doi.org/10.1038/s41598-021-85239-w

DE MASTRO, FRANCESCO; BRUNETTI, GENNARO; TRAVERSA, ANDREINA; BLAGODATSKAYA, EVGENIA. Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem. Applied Soil Ecology, v. 177, 2022, p. 104529.https://doi.org/10.1016/j.apsoil.2022.104529

DOMINCHIN, MARIA-FLORENCIA; VERDENELLI, ROMINA-AYLÉN; BERGER, MICAELA-GISELL; AOKI, ANTONIO; MERILES, JOSÉ-MANUEL. Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices. European Journal of Soil Biology, v. 104, 2021, p. 103298.https://doi.org/10.1016/j.ejsobi.2021.103298

DVOŘÁČKOVÁ, H.; ZÁHORA, JAROSLAV; POSPÍSILOVÁ, LUBICA; VICEK, VITESLAV. Potencial de biocarbón después de su activación biológica por microflora nativa del suelo. Revista MVZ Córdoba, v. 26, n. 3, 2021, e2219.https://doi.org/10.21897/rmvz.2219

EL-NAGGAR, ALI; LEE, SANG-SOO; RINKLEBE, JÖRG; FAROOQ, MUHAMMAD; SONG, HOCHEOL; SARMAH, AJIT K.; ZIMMERMAN, ANDREW R.; AHMAD, MAHTAB; SHAHEEN, SABRY M.; OK, YONG-SIK. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, v. 337, 2019, p. 536–554.https://doi.org/10.1016/j.geoderma.2018.09.034

GAO, SI; DELUCA, THOMAS H. Biochar alters nitrogen and phosphorus dynamics in a western rangeland ecosystem. Soil Biology and Biochemistry, v. 148, 2020, p. 107868. https://doi.org/10.1016/j.soilbio.2020.107868

GHODAKE, GAJANAN-SAMPATRAO; SHINDE, SURENDRA-KRUSHNA; KADAM, AVINASH-ASHOK; SARATALE, RIJUTA-GANESH; SARATALE, GANESH-DATTATRAYA; KUMAR, MANU; PALEM, RAMASUBBA-REDDY; AL-SHWAIMAN, HIND A.; ELGORBAN, ABDALLAH M.; SYED, ASAB; KIM, DAE-YOUNG. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, v. 297, 2021, p. 126645.https://doi.org/10.1016/j.jclepro.2021.126645

GOROVTSOV, ANDREY V.; MINKINA, TATIANA M.; MANDZHIEVA, SAGLARA S.; PERELOMOV, LEONIV V.; SOJA, GERHARD; ZAMULINA, INNA V.; RAJPUT, VISHNU D.; SUSHKOVA, SVETLANA N.; MOHAN, DINESH; YAO, JUN. The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, v. 42, n. 8, 2020, p. 2495–2518.https://doi.org/10.1007/s10653-019-00412-5

GÜNAL, ELIF; ERDEM, HALIL; DEMIRBAŞ, AHMET. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science, v. 64, n. 14, 2018, p. 1963–1974. https://doi.org/10.1080/03650340.2018.1471205

HAIDER, FASIH-ULLAH; COULTER, JEFFREY A.; CHEEMA, SARDAR-ALAM; FAROOQ, MUHAMMAD; WU, JUN; ZHANG, RENZHI; SHUAIJIE, GUO; LIQUN, CAI. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, v. 214, 2021, p. 112112. https://doi.org/10.1016/j.ecoenv.2021.112112

HARTER, JOHANNES; KRAUSE, HANS-MARTER; SCHUETTLER, STEFANIE; RUSER, REINER; FROMME, MARCUS; SCHOLTEN, THOMAS; KAPPLER, ANDREAS; BEHRENS, SEBASTIAN. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, v. 8, 2014, p. 660–674.https://doi.org/10.1038/ismej.2013.160

HERMANS, SYRIE M.; BUCKLEY, HANNAH L.; CASE, BRADLEY S.; CURRAN-COURNANE, FIONA; TAYLOR, MATTHEW; LEAR, GAVIN. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, v. 8, 2020, p. 79. https://doi.org/10.1186/S40168-020-00858-1

INTANI, KIATKMJON; LATIF, SAJID; KABIR, RAFAYATUL A.K.M.; MÜLLER, JOACHIM. Effect Of Self-Purging Pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technology, v. 218, 2016, p. 541–551.https://doi.org/10.1016/j.biortech.2016.06.114

JI, MENGYUAN; WANG, XAOXIA; USMAN, MUHHAMAD; LIU, FEIHONG; DAN, YITONG; ZHOU, LEI; CAMPANARO, STEFANO; LUO, GANG; SANG, WENJING. Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, v. 294, 2022, p. 118655. https://doi.org/10.1016/j.envpol.2021.118655

JOSEPH, STEPHEN; COWIE, ANETTE L.; VAN ZWIETEN, LUKAS; BOLAN, NANTHI; BUDAI, ALICE; BUSS, WOLFRAM; CAYUELA, MARIA-LUZ; GRABER, ELLEN R.; IPPOLITO, JAMES A.; KUZYAKOV, YAKOV; LUO, YU; OK, YONG-SIK; PALANSOORIYA, KUMUDUNY N.; SHEPHERD, JESSICA; STEPHENS, SCOTT; WENG, ZHE-HAN; LEHMANN, JOHANNES. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, v. 13, n. 11, 2021, p. 1731–1764.https://doi.org/10.1111/gcbb.12885

KAMALI, MOHAMMADREZA; SWEYGERS, NICK; AL-SALEM, SULTAN; APPELS, LISE; AMINABHAVI, TEJRAJ M.; DEWIL, RAF. Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal, v. 428, 2022, p. 131189.https://doi.org/10.1016/j.cej.2021.131189

KAUR, NAVILJYOT; BHARDWAJ, PRIYANKA; SINGH, GURSHARAN; KUMAR-ARYA, SHAILENDRA. Applicative Insights on Nascent Role of Biochar Production, Tailoring and Immobilization in Enzyme Industry-A Review. Process Biochemistry, v. 107, 2021, p. 153–163. https://doi.org/10.1016/j.procbio.2021.05.017

KOCSIS, TAMÁS; RINGER, MARIANNA; BIRÓ, BORBÁLA. Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Applied Sciences, v. 12, 2022, p. 4051.https://doi.org/10.3390/app12084051

LECROY, CHASE; MASIELLO, CAROLINE A.; RUDGERS, JENNIFER A.; HOCKADAY, WILLIAM C.; SILBERG, JONATHAN J. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biology and Biochemistry, v. 58, 2013, p. 248–254.https://doi.org/10.1016/j.soilbio.2012.11.023

LEE, XIN-JIAT; LEE, LAI-YEE; GAN, SUYIN; THANGALAZHY-GOPAKUMAR, SUCHITHRA; NG, HOON-KIAT. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, v. 236, 2017, p. 155–163.https://doi.org/10.1016/j.biortech.2017.03.105

LEHMANN, JOHANNES; RILLIG, MATTHIAS C.; THIES, JANICE; MASIELLO, CAROLINE A.; HOCKADAY, WILLIAM C.; CROWLEY, DAVID. Biochar effects on soil biota - A review. Soil Biology and Biochemistry, v. 43, n. 9, 2011, p. 1812–1836.https://doi.org/10.1016/j.soilbio.2011.04.022

LI, SHUAILING; WANG, SHUO; FAN, MIAOCHUN; WU, YANG; SHANGGUAN, ZHOUPING. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage Research, v. 196, 2020 p. 104437.https://doi.org/doi.org/10.1016/j.still.2019.104437

LI, YUNCHAO; XING, BO; DING, YAN; HAN, XINHONG; WANG, SHURONG. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, v. 312, 2020, p. 123614. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123614

LOPES, ÉRIKA-MANUELA; REIS, MATHEUS-MEDES; FRAZÃO, LEIDIVAN-ALMEIDA; DA MATA-TERRA, LORENA-EMANUELLE; LOPES, ERNESTO-FILIPE; DOS SANTOS, MARINALVA-MARTINS; FERNANDES, LUIZ-ARNALDO. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environmental Technology and Innovation, v. 21, 2021, p. 101270.https://doi.org/10.1016/j.eti.2020.101270

MORENO, JOSÉ-LUIS; BASTIDA, FELIPE; DÍAZ-LÓPEZ, MARTA; LI, YUNKAI; ZHOU, YUNPEG; LÓPEZ-MONDÉJAR, RUBEN; BENAVENTE-FERRACES, IRIA; ROJAS, ROXANA; REY, ANA; GARCÍA-GIL, JUAN-CARLOS; PLAZA, CÉSAR. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma, v. 407, 2022, p. 115536.https://doi.org/10.1016/j.geoderma.2021.115536

MORUGÁN-CORONADO, ALICIA; PÉREZ-RODRÍGUEZ, PAULA; INSOLIA, ELIANA; SOTO-GÓMEZ, DIEGO; FERNÁNDEZ-CALVIÑO, DAVID; ZORNOZA, RAUL. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems and Environment, v. 329, 2022, p. 107867.https://doi.org/10.1016/j.agee.2022.107867

MUKHERJEE, SANTANU; SARKAR, BINOY; KUMAR-ARALAPPANAVAR, VIJAK; MUKHOPADHYAY, RAJ; BASAK, B.B.; SRIVASTAVA, PRASHANT; MARCHUT-MIKOLAJCZYK, OLGA; BHATNAGAR, AMIT; SEMPLE, KIRT T.; BOLAN, NANTI. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, v. 308, 2022, p. 119609.https://doi.org/10.1016/j.envpol.2022.119609

MUNAR-FLÓREZ, DAVID-ARTURO; RAMIREZ-CONTRERAS, NIDIA-ELIZABETH; GARCIA-NUÑEZ, JESÚS-ALBERTO. Biocarbón como producto de la biomasa residual de palma de aceite en un concepto de economía circular. Boletín Técnico. v. 41, 2022, p. 1–80. https://publicaciones.fedepalma.org/index.php/boletines/article/view/13709

OLIVEIRA-FERNANDES, JULIA; BERNARDINO-ROLIM, CASSIANO-AUGUSTO; MAHLER, CLAUIDO-FERNANDO; SANTELLI, RICARDO-ERTHAL; BRAZ-FERREIRA, BERNARDO; BORGES, RENATA C.; DA CUNHA VELOSO, MÁRCIA-CRISTINA; ROMEIRO, GILBERTO; CINCOTTO, FERNANDO-HENRIQUE. Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water, Air, and Soil Pollution, v. 232, n. 2, 2021, p. 1–13.https://doi.org/10.1007/s11270-021-05030-5

PATIÑO-TORRES, CARLOS; SÁNCHEZ-DE PRAGER, MARINA. Aislamiento e identificación de bacterias solubilizadoras de fosfatos, habitantes de la rizósfera de chontaduro (B. gassipaes kunth). Biotecnología en el Sector Agropecuario y Agroindustrial, v. 10, n. 2, 2012, p. 177–187.https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/258

PINZON-NUÑEZ, DIEGO-ARMANDO; ADARME-DURAN, CARLOS-ALBERTO; VARGAS-FIALLO, LUZ-YOLANDA; RODRIGUEZ-LOPEZ, NELSON; RIOS-REYES, CARLOS-ALBERTO. Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. International Journal of Recycling of Organic Waste in Agriculture, v. 11, 2022, p. 101–115. https://doi.org/10.30486/ijrowa.2021.1920124.1192

QUILLIAM, RICHARD S.; GLANVILLE, HELEN C.; WADE, STEPHEN C.; JONES, DAVEY L. Life in the “charosphere” - Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, v. 65, 2013, p. 287–293. https://doi.org/10.1016/j.soilbio.2013.06.004

RODRIGUEZ, JOSE-ALEXANDER; LUSTOSA-FILHO, JOSE-FERREIRA; AZEVEDO-MELO, LEONIDAS-CARRIJO; RODRIGUES-DE ASSIS, IGOR; SENNA-DE OLIVEIRA, TEÓGENES. Co-pyrolysis of agricultural and industrial wastes changes the composition and stability of biochars and can improve their agricultural and environmental benefits. Journal of Analytical and Applied Pyrolysis, v. 155, 2021, p. 105036. https://doi.org/10.1016/j.jaap.2021.105036

ROMBEL, ALEKSANDRA; KRASUCKA, PRACTYCJA; OLESZCZUK, PATRYC. Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Science of the Total Environment, v. 816, 2022, p. 151588.https://doi.org/10.1016/j.scitontev.2021.151588

ROMERO, CARLOS M.; HAO, XIYING; LI, CHUNLI; OWENS, JEN; SCHWINGHAMER, TIMOTHY; MCALLISTER, TIM A.; OKINE, ERASMUS. Nutrient retention, availability and greenhouse gas emissions from biochar-fertilized Chernozems. Catena, v. 198, 2021, p. 105. https://doi.org/10.1016/j.catena.2020.105046

SANCHEZ-REINOSO, ALEFSI-DAVID; ÁVILA-PEDRAZA, EDGAR-ALVARO; RESTREPO-DIAZ, HERMANN. Use of biochar in agriculture, a review. Acta Biologica Colombiana, v. 25, n. 2 2020, p. 327–338.https://doi.org/10.15446/abc.v25n2.79466

SHEN, XIULI; MENG, HAIBO; SHEN, YUJUN; DING, JINGTAO; ZHOU, HAIBIN; CONG, HONGBIN; LI, LIJIE. A comprehensive assessment on bioavailability, leaching characteristics and potential risk of polycyclic aromatic hydrocarbons in biochars produced by a continuous pyrolysis system. Chemosphere, v. 287, 2022, p. 132116.https://doi.org/10.1016/j.chemosphere.2021.132116

SILVA-GONZAGA, MARIA-ISIDORA; DE JESUS-SANTOS, JOSÉ-CARLOS; DE ALMEIDA, ANDRÉ-QUINTAO; DA ROS, KÁSSIO; MELO-SANTOS, WALLACE. Nitrogen and phosphorus availability in the rhizosphere of maize plants cultivated in biochar amended soil. Archives of Agronomy and Soil Science, 2021, p. 1–13.https://doi.org/10.1080/03650340.2020.1869215

SONG, XIAONA; RAZAVI, BAHAR S.; LUDWIG, BERNARD; ZAMANIAN, KAZEM; ZANG, HUADOM; KUZYAKOV, YAKOV; DIPPOLD, MICHAELA A.; GUNINA, ANNA. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Science of the Total Environment, v. 735, 2020 p. 139393.https://doi.org/10.1016/j.scitotenv.2020.139393

TU, CHEN; WEI, JIN; GUAN, FENG; LIU, YING; SUN, YUHUAN; LUO, YONGMING. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment International, v. 137, 2020, p.105576. https://doi.org/10.1016/j.envint.2020.105576

VALIZADEH, SOHEIL; LEE, SANG-SOO; CHOI, YONG-YUN; BAEK, KITAE; JEON, BYONG-HUNG; ANDREW-LIN, KING-YUN; PARK, YOUNG-KWON. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Environmental Research, v. 213, 2022, p. 113599. https://doi.org/10.1016/j.envres.2022.113599

WANG, JIE; SHI, LIANG; ZHAI, LULU; ZHANG, HAOWEN; WANG, SHENGXIAO; ZOU, JIANWEN; SHEN, ZHENGUO; LIAN, CHUNLAN; CHEN, YAHUA. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety, v. 207, 2021, p. 111261.https://doi.org/10.1016/j.ecoenv.2020.111261

WANG, MENGMENG; WU, YUNCHENG; ZHAO, JIAYING; LIU, YU; CHEN, ZHE; TANG, ZHAOYANG; TIAN, WEI; XI, YUNGUANG; ZHANG, JIBING. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Science of the Total Environment, v. 821, 2022, p. 153406. https://doi.org/10.1016/j.scitotenv.2022.153406

WU, CHUCHU; ZHI, DAN; YAO, BIN; ZHOU, YUZHOU; YANG, YUAN; ZHOU, YAOYU. Immobilization of microbes on biochar for water and soil remediation: A review. Environmental Research, v. 212, 2022, p. 113226.https://doi.org/10.1016/j.envres.2022.113226

XIA, HAO; RIAZ, MUHAMMAD; LIU, BO; LI, YUXUAN; EL-DESOUKI, ZEINAB; JIANG, CUNCANG. Over two years study: Peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties. Applied Soil Ecology, v. 176, 2022, p. 104485.https://doi.org/10.1016/j.apsoil.2022.104485

YAASHIKAA, P.R.; KUMAR, SHENTIL P.; VARJANI, SUNITA; SARAVANAN, A. A critical review on the biochar production techniques, characterization, stability, and applications for circular bioeconomy. Biotechnology Reports, v. 28. 2020, p.e00570. https://doi.org/10.1016/j.btre.2020.e00570

YADAV, VINEET; JAIN, SHILPI; MISHRA, POOJA; KHARE, PUJA; SHUKLA, ASHUTOSH K.; KARAK, TANMAY; SINGH, ANIL K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Applied Soil Ecology, v. 138, 2019, p. 144–155. https://doi.org/10.1016/j.apsoil.2019.01.012

YAN, TAOTAO; XUE, JIANHUI; ZHOU, ZHIDONG; WU, YONGBO. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, v. 794, 2021, p. 148757.https://doi.org/10.1016/j.scitotenv.2021.148757

YANG, CAIDI; LU, SHENGGAO. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment, v. 805, 2022, p. 150325.https://doi.org/10.1016/j.scitotenv.2021.150325

YOU, XINXIN; WANG, SHENG; DU, LINA; WU, HUAN; WEI, YI. Effects of organic fertilization on functional microbial communities associated with greenhouse gas emissions in paddy soils. Environmental Research, v. 213, 2022, p. 113706. https://doi.org/10.1016/j.envres.2022.113706

YU, Z.; CHEN, L.; PAN, S.; LI, Y.; KUZYAKOV, Y.; XU, J.; BROOKES, P.C.; LUO, Y. Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. European Journal of Soil Science, v. 69, n. 3, 2018, p. 521–534. https://doi.org/10.1111/ejss.12542

YUVARAJ, ANANTHANARAYANAN; THANGARAJ, RAMASUNDARAM; KARMEGAM, NATCHIMUTHU; RAVINDRAN, BALASUBRAMANI; CHANG, SOON-WOONG; AWASTHI, MUKESH-KUMAR; KANNAN, SOUNDARAPANDIAM. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. Chemosphere, v. 278, 2021, p. 130458.https://doi.org/10.1016/j.chemosphere.2021.130458

ZHANG, GE; DOU, SEN; MENG, FANRONG; YIN, XIANBAO; ZHOU, XIN. Transformation of biochar into extracted humic substances under short-term laboratory incubation conditions: Evidence from stable carbon isotopes. Soil and Tillage Research, v. 215, 2022, p. 105189.https://doi.org/10.1016/j.still.2021.105189

ZHAO, LING; CAO, XINDE; MAŠEK, ONDREJ; ZIMMERMAN, ANDREW. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, v. 256–257, 2013, p. 1–9.https://doi.org/10.1016/j.jhazmat.2013.04.015

ZHENG, MAN-MAN; WANG, CHAO; LI, WENG-XIN; GUO, LONG; CAI, ZE-JIAN; WANG, BO-REN; CHEN, JUAN-CHEN; SHEN, REN-FANG. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil. European Journal of Soil Biology, v. 104, 2021, p. 103312.https://doi.org/10.1016/j.ejsobi.2021.103312

ZHONG, LEI; LI, GAOYUAN; QING, JINWU; LI, JINLEI; XUE, JIANMING; YAN, BEIBEI; CHEN, GUANGYI; KANG, XIAOMING; RUI, YICHAO. Biochar can reduce N2O production potential from rhizosphere of fertilized agricultural soils by suppressing bacterial denitrification. European Journal of Soil Biology, v. 109, 2022, p. 103391.https://doi.org/10.1016/j.ejsobi.2022.103391

ZIMMERMAN, ANDREW R.; GAO, BIN; AHN, MI-YOUN. Positive and negative carbón mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, v. 43, n. 6, 2011, p. 1169–1179.https://doi.org/10.1016/j.soilbio.2011.02.005

Cómo citar
Melo Lozano, H. A. ., & Afanasjeva, N. . (2022). Efecto de la aplicación de biochar en la actividad microbiana en suelos: Revisión. Biotecnología En El Sector Agropecuario Y Agroindustrial, 1–13. https://doi.org/10.18684/rbsaa.v.n.2197
Publicado
2022-09-22
Sección
Artículos de Revisiòn