Efecto bioestimulante de una chalcona sintética sobre frijol guajiro (Vigna unguiculata L. Walp)
Resumen
El frijol guajiro es un cultivo de subsistencia importante en zonas secas del caribe colombiano, allí, los tensores ambientales a menudo ocasionan estrés vegetal y limitan la producción agrícola. Los bioestimulantes vegetales mejoran el desempeño de las plantas bajo condiciones de estrés; las chalconas no se han estudiadas como bioestimulantes pero son moléculas multifuncionales que expresan bioactividad y están involucradas en la regulación del metabolismo vegetal, por lo anterior es conveniente estudiar sus propiedades como bioestimulantes en la agricultura. El objetivo del trabajo fue evaluar el efecto de la chalcona sintética 3-(4-nitrofenil)-1-(piridin-2-i)-prop-2-en-1-ona (CHSNPP) sobre el crecimiento temprano del frijol guajiro (Vigna unguiculata), bajo condiciones de cámara de crecimiento vegetal, para aportar evidencia sobre una posible aplicación como biestimulante. Se probaron soluciones de CHSNPP a concentraciones de 25, 50, 100 y 150 ppm, y se evaluaron dos formas de aplicación (por aspersión foliar- AF e inmersión - IM de plántulas en la solución). El tratamiento mediante IM con 25 ppm ocasionó un incremento del 321 % en el área superficial de raíces, con 50 ppm hubo incremento del 78 % en el número de nódulos formados por la simbiosis con rizóbios nativos presentes en el suelo, además de incrementos del 111 % en biomasa y del 16 % en el índice de contenido de clorofila -ICC, finalmente con 150 ppm se incrementó el número de raíces hasta el 82 %; por su parte, el tratamiento mediante AF con 150 ppm ocasionó incrementos en área foliar y biomasa del 101 % y 137 %. Se concluye que las respuestas observadas en las plantas tratadas con CHSNPP son características de los mecanismos de acción de algunos bioestimulantes no microbianos, lo que permite sugerir un posible uso como bioestimulante en frijol guajiro.
Descargas
Referencias bibliográficas
AHMAD, MUHAMMAD-ZULFIQAR; ZHANG, YANRUI; ZENG, XIANGSHENG; LI, PENGHUI; WANG, XIAOBO; BENEDITO, VAGNER; ZHAO, JIAN. Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. Journal of Experimental Botany, v. 72, n. 4, 2021, p. 1349-1369. https://doi.org/10.1093/jxb/eraa511
ALI, QASIM; SHEHZAD, FAISAL; WASEEM, MUHAMMAD; SHAHID, SAMREENA; HUSSAIN, AABDULLAH-IJAZ; HAIDER, MUHAMMAD-ZULQURNAIN; HABIB, NOMAN; HUSSAIN, SYED-MURTAZA; JAVED, TARIQ; PERVEEN, RASHIDA. Plant-based biostimulants and plant stress responses. En HASANUZZAMAN, MIRZA. Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives, 1 ed, Singapore (Singapore): Springer, 2020, 261 p. https://doi.org/10.1007/978-981-15-2156-0_22
ALJAMALI, NAGHAM; HAMZAH DAYLEE, SHAYMAA; JABER KADHIUM, AFAQ. Review on chemical-biological fields of chalcone compounds. Forefront Journal of Engineering & Technology, v. 2, n. 1, 2020, p. 33-44.
BAÍA, DAIANE-CARVALHO; OLIVARES, FABIO; ZANDONADI, DANIEL; DE PAULA-SOARES, CLEITON; SPACCINI, RICCARDO; CANELLAS, LUCIANO. Humic acids trigger the weak acids stress response in maize seedlings. Chemical and Biological Technologies in Agriculture, v. 7, n. 1, 2020, p. 1-13. https://doi.org/10.1186/s40538-020-00193-5
BHUPENCHANDRA, INGUDAM; DEVI, SOIBAM-HELENA; BASUMATARY, ANJALI; DUTTA, SAMIRON; SINGH, LAISHRAM-KANTA; KALITA, PRAKASH; BORA, S; ROMA, DEVI; SAIKIA, AMARJIT; SHARMA, PRIYANKA; BHAGOWATI, SEEMA; TAMULI, BABITA; DUTTA, NAMITA; BORAH, KRIPAL. Biostimulants: Potential and Prospects in Agriculture International Research. Journal of Pure and Applied Chemistry, v. 21, 2020, p. 20-35. https://doi.org/10.9734/irjpac/2020/v21i1430244
BOSSE, MARCO-ANTONIO; DA SILVA, MARIANA; DE OLIVEIRA, NATÁLIA-GABRIELA; DE ARAUJO, MAYCON-ANDERSON; RODRIGUES, CLEVERSON; DE AZEVEDO, JAQUELYNE-POLISZUK; RODRIGUES, ANDRÉ. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiology and Biochemistry, v. 166, 2021, p. 512-521. https://doi.org/10.1016/j.plaphy.2021.06.007
BULGARI, ROBERTA; FRANZONI, GIULIA; FERRANTE, ANTONIO; Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, v. 9, n. 6, 2019, p. 306. https://doi.org/10.3390/agronomy9060306
CADENA J. Preparación y caracterización de compuestos con estructuras de chalcona [Tesis Maestría en Farmacia y Química de productos naturales]. Braganza (Portugal), Salamanca (España): Instituto Politécnico de Braganca, Facultad de tecnología y gestión; Universidad de Salamanca, Facultad de ciencias químicas, 2018., 88p.
CANELLAS, LUCIANO; CANELLAS, NATALIA; OLIVARES, FABIO; PICCOLO, ALESSANDRO. Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, v. 7, n. 12, 2020, p. 1-17. https://doi.org/10.1186/s40538-020-00178-4
CANELLAS, LUCIANO; OLIVARES, FABIO; CANELLAS, NATALIA; MAZZEI, PIERLUIGI; PICCOLO, ALESSANDRO. Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technologies in Agriculture, v. 6, n. 1, 2019, p. 1-14.https://doi.org/10.1186/s40538-018-0139-7
CONSTANTINESCU, TEODORA; LUNGU, CLAUDIU. Anticancer Activity of Natural and Synthetic Chalcones. International journal of molecular sciences, v. 22, n. 21, 2021, p. 11306. https://doi.org/10.3390/ijms222111306
CUBILLOS-HINOJOSA, JUAN-GUILLERMO; DA SILVA-ARAUJO, FERNANDA; SACCOL-DE SÁ, ENILSON-LUIZ. Native rhizobia efficient in nitrogen fixation in Leucaena leucocephala in Rio Grande do Sul, Brazil. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 19, n. 1, 2021, p. 128-138.https://doi.org/10.18684/bsaa.v19.n1.2021.1482
DE AZEVEDO, INGA G.; OLIVARES, FABIO L.; RAMOS, ALESSANDRO C.; BERTOLAZI, AMANDA A.; CANELLAS, LUCIANO P. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chemical and Biological Technologies in Agriculture, v. 6, n. 1, 2019, p. 1-10.https://doi.org/10.1186/s40538-019-0149-0
DONG, WEI; SONG, YUGUANG. The significance of flavonoids in the process of biological nitrogen fixation. International journal of molecular sciences, v. 21, n. 16, 2020, p. 5926. https://doi.org/10.3390/ijms21165926b
DU JARDIN, PATRICK; XU, LIN; GEELEN, DANNY. Agricultural Functions and Action Mechanisms of Plant Biostimulants (PBs) an Introduction. En GEELEN, DANNY.; XU, LIN; The Chemical Biology of Plant Biostimulants. London (United Kingdom): John Wiley and Sons Ltd, 2020, p. 1-30.
ERTANI, ANDREA; SCHIAVON, MICHELA; SERENELLA, NARDI. Humic substances (HS) as plant biostimulant in agriculture. En ROUPHAEL, YOUSSEF; Biostimulants for sustainable crop production. London (United Kingdom): Burleigh Dodds Science Publishing, 2020 p. 55-76.
GOYAL, KAMYA; KAUR, RAJWINDER; GOYAL, ANJU; AWASTHI, RAJENDRA. Chalcones: A review on synthesis and pharmacological activities. Journal of Applied Pharmaceutical Science, v. 11, n. 1, 2021, p. 001-014. https://doi.org/10.7324/JAPS.2021.11s101
GUPTA, SHUBHPRIYA; KULKARNI, MANOJ; WHITE, JAMES; STIRK, WENDY; PAPENFUS, HEINO; DOLEZAL, KAREL; ÖRDOG, VINCE; NORRIE, JEFFREY; CRITCHLEY, ALAN; VAN STADEN, JOHANNES. Chapter 1 - Categories of various plant bioestimulants – mode of application and shelf-life. En GUPTA, SHUBHPRIYA; VAN STADEN, JOHANNES; Bioestimulants for crops from seed germination to plant development, Amsterdam (Paises Bajos): Academic press 2021 p. 1-60. https://doi.org/10.1016/B978-0-12-823048-0.00018-6
HASSAN, MOHAMED; ALZANDI, ABDEL-RAHMAN; HASSAN, MOSTAFA. Synthesis, structure elucidation and plants growth promoting effects of novel quinolinyl chalcones. Arabian Journal of Chemistry, v. 13, n. 7, 2020, p. 6184-6190.
IBARRA-ARELLANO, NICOL; GUTIÉRREZ-CABRERA, MARGARITA. Síntesis, caracterización y bioactividad de sistemas α-β insaturados (chalconas) [Memoria de pregrado Tecnología médica]. Talca (Chile): Universidad de Talca, Escuela de Tecnología Médica, 2016, 74 p.
JAYARAMAN, KARIKALAN; RAMAN, VENKAT; SEVANTHI, AMITHA MITHRA; SIVAKUMAR, SIVA; VISWANATHAN, C.; MOHAPATRA, TRILOCHAN; MANDAL, PRANAB-KUMAL. Stress-inducible expression of chalcone isomerase2 gene improves accumulation of flavonoids and imparts enhanced abiotic stress tolerance to rice. Environmental and Experimental Botany, v. 190, 2021, p. 104582.https://doi.org/10.1016/j.envexpbot.2021.104582
KALAMBE, NILIMA A. Synthesis and Study of 2–Hydroxy Substituted Quinoxaline Effects on Different Crop Plant Growth. International Journal for Researches in Biosciences Agriculture & Technology, v. 5, n. 2, 2017, p. 657- 661.
LOTFI, RAMIN; KALAJI, HAZEM; VALIZADEH, GHOLAMREZA; KHALILVAND, BEHROZYAR E; HEMATI, ARASH; GHARAVI-KOCHEBAGH, POURIYA; GHASSEMI, MASOUMEH. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, v. 56, n. 3, 2018, p. 962-979. https://doi.org/10.1007/s11099-017-0745-9
LIU, YITUNG; SUN, XIAOMENG; YIN, DAWEI, YUAN, FANG. Syntheses and biological activity of chalcones-imidazole derivatives. Research on Chemical Intermediates, v. 39, n. 3, 2013, p. 1037-1048. https://doi.org/10.1007/s11164-012-0665-z
MACÍAS-DUARTE, RUBÉN; GRIJALVA-CONTRERAS, RAÚL-LEONEL; ROBLES-CONTRERAS, FABIÁN; NÚÑEZ-RAMÍREZ, FIDEL; CÁRDENAS-SALAZAR, VÍCTOR-ALBERTO; MENDÓZA-PÉREZ, CÁNDIDO. Índice SPAD, nitratos y rendimiento en sorgo en respuesta al suministro de nitrógeno. Agronomía Mesoamericana, v. 32, n.32, 2021, p. 293-305.https://doi.org/10.15517/am.v32i1.39712
MATHESIUS, ULRIKE. The role of the flavonoid pathway in Medicago truncatula in root nodule formation. A review. En DE BRUIJN, FRANS; The model legume Medicago truncatula, London (United Kingdom): John Wiley & sons, Inc, 2019, p. 434-438.
MUSCOLO, ADELE; PIZZEGHELLO, DIEGO; FRANCIOSO, ORNELLA; SANCHEZ CORTES, SANTIAGO; NARDI, SERENELLA. Effectiveness of humic substances and phenolic compounds in regulating plant-biological functionality, Agronomy, v. 10, n. 10, 2020, p. 1553.https://doi.org/10.3390/agronomy10101553
NARDI, SERENELLA; SCHIAVON, MICHELA; FRANCIOSO, ORNELLA. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, v. 26, n. 8, 2021, p. 2256. https://doi.org/10.3390/molecules26082256
NUNES, ROSANE-OLIVEIRA; DOMICIANO, GISELLI; ALVES, WILBER-SOUSA; MELO, ANA-CLAUDIA; NOGUEIRA, FÁBIO-CESAR; CANELLAS, LUCIANO-PASQUALOTO; LOPES-OLIVARES, FÁBIO; BENEDETA, RUSSOLINA; SOARES, MÁRCIA-REGINA. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Scientific reports, v. 9, n. 1, 2019, p. 1-11.https://doi.org/10.1038/s41598-019-48509-2.
PEREIRA, MAYSA-MATHIAS; MORAIS, LUDMILA-CAPRONI; MARQUES, ERICA-ALVES; MARTINS, DVID; CAVALCANTI, VYTÓRIA-PISCITELLI; RODRIGUES, FILIPE-ALMENDAGNA; GONCALVES, WILLIAM; BLANK, A.F.; PASQUAL, MOACIR; DÓRIA, JOYCE. Humic substances and efficient microorganisms: elicitation of medicinal plants - a review. Journal of agricultural Science, v. 11, n. 11, 2019, p. 268-280.https://doi.org/10.5539/jas.v11n7p268
PIZZEGHELLO, DIEGO; SCHIAVON, MICHELA; FRANCIOSO, ORNELLA; DALLA VECCHIA, FRANCESCA; ERTANI, ANDREA; NARDI, SERENELLA. Bioactivity of size-fractionated and unfractionated humic substances from two forest soils and comparative effects on N and S metabolism, nutrition, and root anatomy of Allium sativum L. Frontiers in plant science, 2020, p.1203.https://doi.org/10.3389/fpls.2020.01203
RAI, NIDHI; RAI, SHASHI; SARMA, BIRINCHI. Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto- and Bio-Stimulants. Frontiers in Sustainable Food Systems, v. 5, 2021, p. 754853. https://doi.org/10.3389/fsufs.2021.754853
ROSA, SARA-DANTAS; SILVA, CARLOS-ALBERTO; CARLETTI, PAOLO; SAWAYA, ALEXANDRA. Maize Growth and Root Organic Acid Exudation in Response to Water Extract of Compost Application. Journal of Soil Science and Plant Nutrition, v. 21, n. 4, 2021, p. 2770-2780. https://doi.org/10.1007/s42729-021-00564-3
ROUPHAEL, YOUSSEF; COLLA, GIUSEPPE. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy, v. 10, n. 10, 2020a, p. 1461.https://doi.org/10.3390/agronomy10101461
ROUPHAEL, YOUSSEF; LUCINI, LUIGI; MIRAS-MORENO, BEGOÑA; COLLA, GIUSEPPE; BONINI, PAOLO; CARDARELLI, MARIATERESA. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbio and non-microbial biostimulants. Frontiers in Microbiology, v. 5, n. 11, 2020b, p. 664.https://doi.org/10.3389/fmicb.2020.00664
SHAH, ATEEQ; SMITH, DONALD. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, v. 10, n. 8, 2020, p. 1209. https://doi.org/10.3390/agronomy10081209
SHAHRAJABIAN, MOHAMAD-HESAM; CHASKI, CHRISTINA; POLYZOS, NIKOLAOS; PETROPOULOS, SPYRIDON. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, v. 11, n. 5, 2021, p. 698.https://doi.org/10.3390/biom11050698
SINGH, PARVESH; ANAND, AMIT; KUMAR, VIPAN. Recent developments in biological activities of chalcones: a mini review. European journal of medicinal chemistry, v. 6, n. 85, 2014, p. 758-777. https://doi.org/10.1016/j.ejmech.2014.08.033
STAMBULSKA, ULIANA-YA; BAYLIAK, MARIA. Legume-rhizobium symbiosis: Secondary metabolites, free radical processes, and effects of heavy metals. Co-Evolution of Secondary Metabolites, En: MÉRILLON, JEAN-MICHEL.; RAMAWAT, KISHAN-GOPAL; Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Nueva York (Estados Unidos): Springer, 2020, p. 586.
VALERO-VALERO, NELSON O.; VERGEL-CASTRO, CLAUDIA; USTATE, YEISON; GÓMEZ-GÓMEZ, LILIANA C. Bioestimulación de frijol guajiro y su simbiosis con Rhizobium por ácidos húmicos y Bacillus mycoides. Biotecnología en el sector agropecuario y agroindustrial, n. 19, v. 2, 2021, p. 119-134. https://orcid.org/0000-0001-9186-6245
VÁSQUEZ-MARTÍNEZ, YESSENY; OSORIO, MAURICIO; SAN MARTÍN, DIEGO; CARVAJAL, MARCELA; VERGARA, ALEJANDRA; SANCHEZ, ELIZABETH; RAIMONDI, MARCELA; ZACCHINO, SUSANA; MASCAYANO, CAROLINA; TORRENT, CLAUDIA; CABEZAS, FRANCISCO; MEJIAS, SOPHIA; MONTOYA, MARGARITA; CORTEZ-SAN MARTÍN, MARCELO. Antimicrobial, anti-inflammatory and antioxidant activities of polyoxygenated chalcones. Journal of the Brazilian Chemical Society, v. 30, 2019, p. 286-304.https://doi.org/10.21577/0103-5053.20180177
WONG, WEI S.; ZHONG, HONG T; CROSS, ADAM T.; YONG, JEAN W. Plant Biostimulants in Vermicomposts: Characteristics and Plausible Mechanisms. The Chemical Biology of Plant Biostimulants. En GEELEN, DANNY; XU, LIN. The chemical biology of plant biostimulantes. New York (USA). John Wiley & Sons Ltd. 2020, 301 p. https://doi.org/10.1002/9781119357254
YINGJIA, T.; YONGKUN, L.V.; SHIQIN, YU; YUNBIN, LYU; LIANG, ZHANG; JINQWEN, ZHOU. Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids. Enzyme and Microbial Technology, v. 156, 2022, p. 109991.https://doi.org/10.1016/j.enzmictec.2022.109991
ZHOU, KANG; YANG, SONG; LI, SHU-MING. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Natural Product Reports, v. 38, 2021, p. 2236-3360. https://doi.org/10.1039/D0NP00083C
Derechos de autor 2023 Universidad del Cauca

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.