Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales

  • Jader Martinez Giron Universidad del Valle Sede Palmira
  • Katherine Figueroa Sepúlveda Universidad Nacional de Colombia
  • Nelly Zarith Castillo Robles Universidad Nacional de Colombia
Palabras clave: Calidad, Compuestos bioactivos, Conservación, Enzimas, Esterilización, Microorganismos, Pasteurización, Procesamiento, Temperatura, Vegetal

Resumen

En la actualidad la industria alimentaria busca ofrecer productos alimentarios frescos pero a su vez que tengan una vida útil prolongada. Existen varias técnicas que requieren tratamiento térmico las cuales permiten aumentar la vida útil de los alimentos pero estas pueden afectar la calidad final del producto. La alta presión hidrostática y la homogeneización por altas presiones son nuevas técnicas no térmicas que  permiten actuar sobre los alimentos a temperaturas de proceso bajas alargando la vida útil y conservando la calidad nutricional. La alta presión hidrostática se ha aplicado en diferentes frutas mínimamente procesadas para conservar su frescura y propiedades nutricionales entre ellas los duraznos, el mango, las cerezas, las fresas, la pulpa de naranja, el melón, la chirimoya y las aceitunas donde se ha determinado que esta técnica conserva mejor las propiedades de estos materiales vegetales respecto a tratamientos térmicos convencionales. En cuanto a la homogeneización por alta presión se ha aplicado principalmente en jugos de manzana, fresa, mango, sandía, toronja y zumo de naranja obteniendo una buena inactivación de microorganismos y una mejor conservación de compuestos bioactivos, sin afectar las propiedades nutricionales y funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Ciencia y tecnología en alimentos

Lenguajes:

Español; Castellano

Referencias bibliográficas

RUIZ, V.; ALONSO, R.; SALVADOR, M.; CONDÓN, S.; CONDÓN-ABANTO, S. Impact of shoulders on the calculus of heat sterilization treatments with different bacterial spores. Food Microbiology, v. 94, 2021, e103663.https://doi.org/10.1016/j.fm.2020.103663

HRADECKY, J.; KLUDSKA, E.; BELKOVA, B.; WAGNER, M.; HAJSLOVA, J. Ohmic heating: A promising technology to reduce furan formation in sterilized vegetable and vegetable/meat baby foods. Innovative Food Science & Emerging Technologies, v. 43, 2017, p.1-6. https://doi.org/10.1016/j.ifset.2017.07.018

DESHAWARE, S.; GUPTA, S.; SINGHAL, R.; VARIYAR, P.S. Influence of different pasteurization techniques on antidiabetic, antioxidant and sensory quality of debittered bitter gourd juice during storage. Food Chemistry, v. 285, 2019, p. 156-162. https://doi.org/10.1016/j.foodchem.2019.01.140

CHENG, CHUAN-XIANG; JIA, MENG; GUI, YAO; MA, YAQIN. Comparison of the effects of novel processing technologies and conventional thermal pasteurisation on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Innovative Food Science & Emerging Technologies, v. 64, 2020, e102425.https://doi.org/10.1016/j.ifset.2020.102425

GIRALDO-GIL, ALEXANDER; OCHOA-GONZÁLEZ, OSCAR-ALBERTO; CARDONA- SEPÚLVEDA, LUIS-FERNANDO; ALVARADO-TORRES, PEDRO-NEL. Venting stage experimental study of food sterilization process in a vertical retort using temperature distribution tests and energy balances. Case Studies in Thermal Engineering, v. 22, 2020, e100736.https://doi.org/10.1016/j.csite.2020.100736

MARTÍN-VERTEDOR, DANIEL; RODRIGUES, NUNO; MARX, ÍTALA-M.G.; VELOSO, ANA- C.A.; PERES, ANTÓNIO-M.; PEREIRA, JOSÉ-ALBERTO. Impact of thermal sterilization on the physicochemical-sensory characteristics of Californian-style black olives and its assessment using an electronic tongue. Food Control, v. 117, 2020, e107369.https://doi.org/10.1016/j.foodcont.2020.107369

DAI, JINMING; BAI, MEI; LI, CHANGZHU; CUI, HAIYING; LIN, LIN. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends in Food Science & Technology, v. 105, 2020, p. 211-222.https://doi.org/10.1016/j.tifs.2020.09.016

AGUDELO-MARTÍNEZ, PAOLA A.; LUNA-RAMÍREZ, JULIO C.; QUINTERO-CASTAÑO, VICTOR D. Formulación y evaluación fisicoquímica de jugo de mora (Rubus glaucus Benth) enriquecido con calcio y vitamina C. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 18, n. 1, 2020, p. 56-63.https://doi.org/10.18684/bsaa.v18n1.1411

MANIGLIA, BIANCA C.; CASTANHA, NANCI; ROJAS, MELIZA-LINDSAY; AUGUSTO, PEDRO E.D. Emerging technologies to enhance starch performance. Current Opinion in Food Science, v. 37, 2021, p. 26-36.https://doi.org/10.1016/j.cofs.2020.09.003

RIOS-CORRIPIO, GABRIELA; WELTI-CHANES, JORGE; RODRÍGUEZ-MARTÍNEZ, VERÓNICA; GUERRERO-BELTRÁN, JOSÉ-ÁNGEL. Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innovative Food Science and Emerging Technologies, v. 59, 2020, e102249.https://doi.org/10.1016/j.ifset.2019.102249

GHARIBZAHEDI-TAGHI, MOHAMMAD-SEYED; HERNÁNDEZ-ORTEGA, CÉSAR; WELTI-CHANES, JORGE; PUTNIK, PREDRAG; BARBA, FRANCISCO J.; MALLIKARJUNAN, KUMAR; ESCOBEDO-AVELLANEDA, ZAMANTHA; ROOHINEJAD, SHAHIN. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, v. 87, 2019, p. 307-320.https://doi.org/10.1016/j.foodhyd.2018.08.012

HUANG, HSIAO-WEN; HSU, CHIAO-PING; WANG, CHUNG-YI. Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, v. 28, n. 1, 2020, p.1-13.https://doi.org/10.1016/j.jfda.2019.10.002

HU, KAI; PENG, D.A.; WANG, LAN; LIU, HAO; XIE, BIJUN; SUN, ZHIDA. Effect of mild high hydrostatic pressure treatments on physiological and physicochemical characteristics and carotenoid biosynthesis in postharvest mango. Postharvest Biology and Technology, v. 172, 2021, e111381.https://doi.org/10.1016/j.postharvbio.2020.111381

ANDRÉS, V.; MATEO-VIVARACHO, L.; GUILLAMÓN, E.; VILLANUEVA, M.J.; TENORIO, M.D. High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. LWT-Food Science and Technology, v. 69, 2016, p. 123-130.https://doi.org/10.1016/j.lwt.2016.01.033

WOLBANG, CARLA M.; FITOS, JACQUELINE L.; TREEBY, MICHAEL T. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science and Emerging Technologies, v. 9, n. 2, 2008, p. 196-200. https://doi.org/10.1016/j.ifset.2007.08.001

PERDOMO-LAMILLA, CAROLINA; VAUDAGNA, SERGIO R.; CAP, MARIANA; RODRIGUEZ, ANABEL. Application of high pressure-assisted infusion treatment to mango pieces: Effect on quality properties. Innovative Food Science and Emerging Technologies, v. 64, 2020, e102431.https://doi.org/10.1016/j.ifset.2020.102431

GÓMEZ-MAQUEO, ANDREA; WELTI-CHANES, JORGE; PILAR-CANO, M. Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Research International, v. 130, 2020, e108909.https://doi.org/10.1016/j.foodres.2019.108909

MENG, LING; ZHANG, WENCHENG; ZHOU, XIANHAN; WU, ZEYU; HUI, AILING; HE, YIWEN., GAO, HAN; CHEN, PENGPENG. Effect of high hydrostatic pressure on the bioactive compounds, antioxidant activity and in vitro digestibility of cooked black rice during refrigerated storage. Journal of Cereal Science, v. 86, 2019, p. 54-59.https://doi.org/10.1016/j.jcs.2019.01.005

MARCOS, BEGONYA; AYMERICH, TERESA; GUARDIA, M-DOLORS; GARRIGA, MARGARITA. Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, v. 76, n. 1, 2007, p. 46-53. https://doi.org/10.1016/j.meatsci.2006.09.020

MANASSERO, CARLOS A; SPERONI, FRANCISCO; VAUDAGNA, SERGIO R. High hydrostatic pressure treatment improves physicochemical properties of calcium- and soybean protein-added peach juice. LWT- Food Science and Technology, v. 101, 2019, p. 54-60.https://doi.org/10.1016/j.lwt.2018.11.021

UNITED STATES DEPARTMENT OF AGRICULTURE (USDA). High pressure processing (HPP) and inspection program personnel (IPP) verification responsibilities. FSIS Directive, 6120.1, 2012, p. 1-8.

BOVER-CID, S.; BELLETTI, N.; GARRIGA, M.; AYMERICH, T. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiology, v. 28, n. 4 , 2011, p. 804-809.https://doi.org/10.1016/j.fm.2010.05.005

YE, RAN; HARTE, FEDERICO. High pressure homogenization to improve the stability of casein-hydroxypropyl cellulose aqueous systems. Food Hydrocolloids, v. 35, 2014, p.670-677.https://doi.org/10.1016/j.foodhyd.2013.08.022

JIN, SHUGUANG; ZHANG, GUANGMING; ZHANG, PANYUE; FAN, SHIYANG; LI, FAN. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresource Technology, v. 181, 2015, p. 270-274. https://doi.org/10.1016/j.biortech.2015.01.069

SUÁREZ-JACOBO, ÁNGELA; RÜFER, CORINNA E.; GERVILLA, RAMÓN; GUAMIS, BUENAVENTURA; ROIG-SAGUÉS, ARTUR X.; SALDO, JORDI. Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chemistry, v. 127, n. 2, 2011, p. 447-454.https://doi.org/10.1016/j.foodchem.2010.12.152

CALLIGARIS, SONIA; FOSCHIA, MARTINA; BARTOLOMEOLI, INGRID; MAIFRENI, MICHELA; MANZOCCO, LARA. Study on the applicability of high-pressure homogenization for the production of banana juices. LWT-Food Science and Technology, v. 45, n. 1, 2012, p. 117-121.https://doi.org/10.1016/j.lwt.2011.07.026

DUMAY, ELIANE; CHEVALIER-LUCIA, DOMINIQUE; PICART-PALMADE, LAËTITIA; BENZARIA, AMAL; GRÀCIA-JULIÀ, ALVAR; BLAYO, CLAIRE. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science and Technology, v. 31, n. 1, 2013, p.13-26.https://doi.org/10.1016/j.tifs.2012.03.005

MARESCA, PAOLA; DONSÌ, FRANCESCO; FERRARI, GIOVANNA. Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. Journal of Food Engineering, v. 104, n. 3, 2011, p. 364-372. https://doi.org/10.1016/j.jfoodeng.2010.12.030

VELÁZQUEZ-ESTRADA, R.M.; HERNÁNDEZ-HERRERO, M.M.; GUAMIS-LÓPEZ, B.; ROIG-SAGUÉS, A.X. Impact of ultra high pressure homogenization on pectin methylesterase activity and microbial characteristics of orange juice: A comparative study against conventional heat pasteurization. Innovative Food Science and Emerging Technologies, v. 13, 2012, p.100-106.https://doi.org/10.1016/j.ifset.2011.09.001

[LIU, HSIAO-HUI; KUO, MENG-I. Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocolloids, v. 52, 2016, p. 741-748. https://doi.org/10.1016/j.foodhyd.2015.08.018

GUAN,YUNJING; ZHOU, LINYAN; BI, JINFENG; YI, JIANYONG; LIU, XUAN; CHEN, QINQIN; WU, XINYE; ZHOU, M.O. Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science and Emerging Technologies, v. 36, 2016, p. 320-329.https://doi.org/10.1016/j.ifset.2016.07.009

DENOYA, G.I.; POLENTA, G.A.; APÓSTOLO, N.M.; BUDDE, C.O.; SANCHO, A.M.; VAUDAGNA, S.R. Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innovative Food Science and Emerging Technologies, v. 33, 2015, p. 84-93. https://doi.org/10.1016/j.ifset.2015.11.014

DENOYA, G.I.; NANNI, M.S.; APÓSTOLO, N.M.; VAUDAGNA, S.R.; POLENTA, G.A. Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing: Implications on the freshness condition. Innovative Food Science and Emerging Technologies, v. 36, 2016, p. 212-220.https://doi.org/10.1016/j.ifset.2016.06.026

DENOYA, G.I., VAUDAGNA, SERGIO R.; CHAMORRO, VERÓNICA C.; GODOY, M. FERNANDA.; BUDDE, CLAUDIO O.; POLENTA, GUSTAVO A. Suitability of different varieties of peaches for producing minimally processed peaches preserved by high hydrostatic pressure and selection of process parameters. LWT-Food Science and Technology, v. 78, 2017, p. 367-372.https://doi.org/10.1016/j.lwt.2017.01.006

MIGUEL-PINTADO, CRISTINA; NOGALES, SERGIO; FERNÁNDEZ-LEÓN, ANA M.; DELGADO-ADÁMEZ, JONATHAN; HERNÁNDEZ, TERESA; LOZANO, MERCEDES; CAÑADA-CAÑADA, FLORENTINA; RAMÍREZ, ROSARIO. Effect of hydrostatic high pressure processing on nectarine halves pretreated with ascorbic acid and calcium during refrigerated storage. LWT-Food Science and Technology, v. 54, n.1, 2013, p. 278-284.https://doi.org/10.1016/j.lwt.2013.05.026

KAUSHIK, NEELIMA; KAUR, BARJINDER-PAL; RAO, P-SRINIVASA; MISHRA, H.N. Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science and Emerging Technologies, v. 22, 2014, p. 40-50.https://doi.org/10.1016/j.ifset.2013.12.011

GAO, GE; REN, PENGYAN; CAO, XIAMIN; YAN, BING; LIAO, XIAOJUN; SUN, ZHIJIAN; WANG, YONGTAO. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food and Bioproducts Processing, v. 100, 2016, p. 221-229.https://doi.org/10.1016/j.fbp.2016.06.017

BUGGENHOUT, SANDY-VAN; WALLECAN, JOËL; CHRISTIAENS, STEFANIE; DEBON, STEPHANE J.J.; DESMET, CHRISTINA; LOEY, ANN-VAN; HENDRICKX, MARC; MAZOYER, JACQUES. Influence of high-pressure homogenization on functional properties of orange pulp. Innovative Food Science and Emerging Technologies, v. 30, 2015, p. 51-60. https://doi.org/10.1016/j.ifset.2015.05.004

VALVERDE, M.T.; MARÍN-INIESTA, F.; CALVO, L. Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality. Journal of Food Engineering, v. 98, n. 4, 2010, p. 421-428. https://doi.org/10.1016/j.jfoodeng.2010.01.022

ABID,MUHAMMAD; JABBAR, SAQIB; HU,BING; HASHIM, MALIK-MUHAMMAD; WU, TAO; WU, ZHONGWEI; KHAN, MUHAMMAD-AMMAR; ZENG, XIAOXIONG. Synergistic impact of sonication and high hydrostatic pressure on microbial and enzymatic inactivation of apple juice. LWT-Food Science and Technology, v. 59, n. 1, 2014, p. 70-76.https://doi.org/10.1016/j.lwt.2014.04.039

BAYINDIRLI, ALEV; ALPAS, HAMI; BOZOĞLU, FARUK; HIZAL, MIRZAHAN. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Food Control, v. 17, n. 1, 2006, p. 52-58. https://doi.org/10.1016/j.foodcont.2004.09.002

YI, JUNJIE; KEBEDE, BINIAM T.; DANG-DOAN, NGOC-HAI; BUVÉ, CAROLIEN; GRAUWET,TARA; LOEY, ANN-VAN; HU, XIAOSONG; HENDRICKX, MARC. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Science and Technology, v. 75, 2017, p. 85-92.https://doi.org/10.1016/j.lwt.2016.08.041

EVELYN, KIM-H.J.; SILVA, F.V.M. Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control, v. 59, 2016, p. 530-537

https://doi.org/10.1016/j.foodcont.2015.06.033

PORĘBSKA, IZABELA; SOKOŁOWSKA, BARBARA; SKĄPSKA, SYLWIA; RZOSKA, SYLWESTER J. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, v. 73, 2017, p. 24-30.https://doi.org/10.1016/j.foodcont.2016.06.005

JUAREZ-ENRIQUEZ, E.; SALMERON-OCHOA, I.; GUTIERREZ-MENDEZ, N.; RAMASWAMY, H.S.; ORTEGA-RIVAS, E. Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. LWT-Food Science and Technology, v. 62, n. 1, 2015, p. 915-919.https://doi.org/10.1016/j.lwt.2014.07.041

KARACAM, CAGRI-HELIN; SAHIN, SERPIL; OZTOP, MECIT-HALIL. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT-Food Science and Technology, v. 64, 2015, p. 932-937. https://doi.org/10.1016/j.lwt.2015.06.064

PLAZA, LUCÍA; SÁNCHEZ-MORENO, CONCEPCIÓN; DE ANCOS, BEGOÑA; ELEZ-MARTÍNEZ, PEDRO; MARTÍN-BELLOSO, OLGA; CANO, M-PILAR. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT-Food Science and Technology, v. 44, n. 4, 2011, p. 834-839.https://doi.org/10.1016/j.lwt.2010.12.013

STINCO, CARLA M.; SENTANDREU, ENRIQUE; MAPELLI-BRAHM, PAULA; NAVARRO, JOSÉ L; VICARIO, ISABEL M; MELÉNDEZ-MARTÍNEZ, ANTONIO J. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, v. 331, 2020, e127259.https://doi.org/10.1016/j.foodchem.2020.127259

DE ANCOS, BEGOÑA; RODRIGO, MARÍA J.; SÁNCHEZ-MORENO, CONCEPCIÓN; CANO, M. PILAR; ZACARÍAS, LORENZO. Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges Navel and the red-fleshed Cara. Food Research International, v. 132, 2020, e109105.https://doi.org/10.1016/j.foodres.2020.109105

EVELYN, SILVA; FILIPA V.M. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control, v. 62, 2016, p. 365-372.https://doi.org/10.1016/j.foodcont.2015.11.007

CAMPOS, F.P.; CRISTIANINI, M. Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenisation. Innovative Food Science and Emerging Technologies, v. 8, 2007, p. 226-229. https://doi.org/10.1016/j.ifset.2006.12.002

TAHIRI, IMANE; MAKHLOUF, JOSEPH; PAQUIN, PAUL; FLISS, ISMAIL. Inactivation of food spoilage bacteria and Escherichia coli O157: H7 in phosphate buffer and orange juice using dynamic high pressure. Food Research International, v. 39, n. 1, 2006, p.98-105. https://doi.org/10.1016/j.foodres.2005.06.005

BARBA, FRANCISCO J.; ESTEVE, MARIA J.; FRIGOLA, ANA. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International, v. 50, n. 2, 2013, p. 545-549.https://doi.org/10.1016/j.foodres.2011.02.038

ZHANG, CHAO; TRIERWEILER, BERNHARD; LI, WU; BUTZ, PETER; XU,YONG; RÜFER, CORINNA E.; MA, YUE; ZHAO, XIAOYAN. Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, v. 126, n. 1, 2011, p. 254-260. https://doi.org/10.1016/j.foodchem.2010.11.013

LABOISSIÈRE, L.H.E.S; DELIZA, R; BARROS-MARCELLINI, A.M.; ROSENTHAL, A.; CAMARGO, L.M.A.Q.; JUNQUEIRA, R.G. Effects of high hydrostatic pressure (HHP) on sensory characteristics of yellow passion fruit juice. Innovative Food Science and Emerging Technologies, v. 8, n. 4, 2007, p. 469-477. https://doi.org/10.1016/j.ifset.2007.04.001

UCKOO, RAM M.; JAYAPRAKASHA, GUDDADARANGAVVANAHALLY K.; SOMERVILLE, JEREMY A.; BALASUBRAMANIAM, V.M.; PINARTE, MONICA; PATIL, BHIMANAGOUDA S. High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (Citrus paradisi Macfad) juice. Innovative Food Science and Emerging Technologies, v. 18, 2013, p. 7-14.https://doi.org/10.1016/j.ifset.2012.11.010

PÉREZ-PULIDO, RUBÉN; TOLEDO, JULIA; GRANDE, Mª-JOSE; GÁLVEZ, ANTONIO; LUCAS, ROSARIO. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, v. 196, 2015, p. 62-69.https://doi.org/10.1016/j.ijfoodmicro.2014.11.033

ORDÓÑEZ-SANTOS, LUIS-EDUARDO; MARTÍNEZ-GIRÓN, JADER; ARIAS-JARAMILLO, MARIA-ENITH. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, v. 233, 2017, p. 96-100. https://doi.org/10.1016/j.foodchem.2017.04.114

ORDÓÑEZ-SANTOS, LUIS-EDUARDO., MARTÍNEZ-GIRÓN, JADER. Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. International Journal of Food Science and Technology, v. 55, 2020, p. 201-210. https://doi.org/10.1111/ijfs.14263

PALACIO-VASQUEZ, ESTEBAN; ARROYAVE-ROA, JUAN-DIEGO; CARDONA-CAICEDO, MAURICIO; HURTADO-IBARBO, JOHN-HEVERTH., MARTÍNEZ-GIRÓN, JADER. Extracción de glucósidos de stevia rebaudiana (bertoni) a partir de tecnologías de extracción verdes. Revista de Investigación Agraria y Ambiental, v. 10, n.1, 2019, p. 43-56.https://doi.org/10.22490/21456453.2336

ORDÓÑEZ-SANTOS, LUIS-EDUARDO., MARTÍNEZ-GIRÓN, JADER., RODRÍGUEZ-RODRÍGUEZ, DIANA-XIMENA. Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA, v. 86, n. 209, 2019, p. 98-103. https://doi.org/10.15446/dyna.v86n209.74840

RIVERA-OCHOA, M.C.; CASTILLO-ROBLES, N.Z.; FIGUEROA-SEPÚLVEDA, K.; ROJAS- DORADO, M.C.; ESPARZA, J.; ORDOÑEZ-SANTOS, L.E. Determinación de los compuestos fenólicos totales y actividad antioxidante en residuos de fruto de papaya (Carica papaya). Vitae, v. 23, supl. 1, 2016, p. 70-73.

SHEN, DONGBEI; KOU-XIAOHONG; WU-CAIE; FAN-GONGJIAN; LI-TINGTING; DOU- JINFENG; WANG-HANBO; ZHU-JINPENG. Cocktail enzyme-assisted alkaline extraction and identification of jujube peel pigments. Food Chemistry, v. 357, 2021, e129747. https://doi.org/10.1016/j.foodchem.2021.129747

ANWAR, MYLENE; BABU-GREESHMA; EL DIN, BEKHIT-ALAA. Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. Innovative Food Science and Emerging Technologies, v. 70, 2021, e102691. https://doi.org/10.1016/j.ifset.2021.102691

FIGUEROA, JORGE G.; BORRAS-LINARES, ISABEL; DEL PINO-GARCÍA, RAQUEL; CURIEL, JOSÉ ANTONIO; LOZANO-SANCHEZ, JESÚS; SEGURA-CARRETERO, ANTONIO. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chemistry, v. 352, 2021, e129300. https://doi.org/10.1016/j.foodchem.2021.129300

SANTOSO, SHELLA-PERMATASARI; LIN, SHIN-PING; WANG, TAN-YING; TING, YUWEN; HSIEH, CHANG-WEI; YU, ROCH-CHUI; ANGKAWIJAYA, ARTIK-ELISA; SOETAREDJO, FELYCIA-EDI; HSU, HSIEN-YI; CHENG, KUAN-CHEN. Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. International Journal of Biological Macromolecules, v. 175, 2021, p. 526-534.https://doi.org/10.1016/j.ijbiomac.2021.01.169

ZAYED, AHMED; BADAWY, MARWA T.; FARAG, MOHAMED A. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chemistry, v. 355, 2021, e129609.https://doi.org/10.1016/j.foodchem.2021.129609

Cómo citar
Martinez Giron, J., Figueroa Sepúlveda, K. ., & Castillo Robles, N. Z. . (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2), 271–285. https://doi.org/10.18684/bsaa.v19.n2.2021.1772
Publicado
2021-06-01
Sección
Artículos de Revisiòn
QR Code

Algunos artículos similares: