Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales

  • Jader Martinez Giron Universidad del Valle Sede Palmira
  • Katherine Figueroa Sepúlveda Universidad Nacional de Colombia
  • Nelly Zarith Castillo Robles Universidad Nacional de Colombia
Palabras clave: Calidad, Compuestos bioactivos, Conservación, Enzimas, Esterilización, Microorganismos, Pasteurización, Procesamiento, Temperatura, Vegetal

Resumen

En la actualidad la industria alimentaria busca ofrecer productos alimentarios frescos pero a su vez que tengan una vida útil prolongada. Existen varias técnicas que requieren tratamiento térmico las cuales permiten aumentar la vida útil de los alimentos pero estas pueden afectar la calidad final del producto. La alta presión hidrostática y la homogeneización por altas presiones son nuevas técnicas no térmicas que  permiten actuar sobre los alimentos a temperaturas de proceso bajas alargando la vida útil y conservando la calidad nutricional. La alta presión hidrostática se ha aplicado en diferentes frutas mínimamente procesadas para conservar su frescura y propiedades nutricionales entre ellas los duraznos, el mango, las cerezas, las fresas, la pulpa de naranja, el melón, la chirimoya y las aceitunas donde se ha determinado que esta técnica conserva mejor las propiedades de estos materiales vegetales respecto a tratamientos térmicos convencionales. En cuanto a la homogeneización por alta presión se ha aplicado principalmente en jugos de manzana, fresa, mango, sandía, toronja y zumo de naranja obteniendo una buena inactivación de microorganismos y una mejor conservación de compuestos bioactivos, sin afectar las propiedades nutricionales y funcionales.

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

[1] RUIZ, V. et al. Impact of shoulders on the calculus of heat sterilization treatments with different bacterial spores. Food Microbiology, 94, 2021,103663.
[2] HRADECKY, J. et al. Ohmic heating: A promising technology to reduce furan formation in sterilized vegetable and vegetable/meat baby foods. Innovative Food Science and Emerging Technologies, 43, 2017, p. 1-6.
[3] DESHAWARE, S. et al. Influence of different pasteurization techniques on antidiabetic, antioxidant and sensory quality of debittered bitter gourd juice during storage. Food Chemistry, 285, 2019, p. 156-162.
[4] CHENG, C.X. et al. Comparison of the effects of novel processing technologies and conventional thermal pasteurisation on the nutritional quality and aroma of mandarin (Citrus unshiu) juice. Innovative. Food Science and Emerging Technologies, 64, 2020, 102425.
[5] GIRALDO-GIL, A. et al. Venting stage experimental study of food sterilization process in a vertical retort using temperature distribution tests and energy balances. Case Studies in Thermal Engineering, 22, 2020, 100736.
[6] MARTÍN-VERTEDOR, D. et al. Impact of thermal sterilization on the physicochemical-sensory characteristics of Californian-style black olives and its assessment using an electronic tongue. Food Control, 117, 2020, 107369.
[7] DAI, J. et al. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends in Food Science & Technology, 105, 2020, p. 211-222.
[8] AGUDELO-MARTÍNEZ, P. et al. Formulación y evaluación fisicoquímica de jugo de mora (Rubus glaucus Benth) enriquecido con calcio y vitamina C. Biotecnología en el Sector Agropecuario y Agroindustrial, 18(1), 2019, p. 56-63.
[9] MANIGLIA, B.C. et al. Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 2021, p. 26-36.
[10] RIOS-CORRIPIO, G. et al. Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innovative Food Science and Emerging Technologies, 59, 2020, 102249.
[11] GHARIBZAHEDI, S.M.T. et al. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, 87, 2019, p. 307-320.
[12] HUANG, H.W. et al. Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 2020, p. 1-13.
[13] HU, K. et al. Effect of mild high hydrostatic pressure treatments on physiological and physicochemical characteristics and carotenoid biosynthesis in postharvest mango. Postharvest Biology and Technology, 172, 2021, 111381.
[14] ANDRÉS, V. et al. High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. LWT-Food Science and Technology, 69, 2016, p. 123-130.
[15] WOLBANG, C.M. et al. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science and Emerging Technologies, 9(2), 2008, p. 196-200.
[16] PERDOMO LAMILLA, C. et al. Application of high pressure-assisted infusion treatment to mango pieces: Effect on quality properties. Innovative Food Science and Emerging Technologies, 64, 2020, p. 102431.
[17] GÓMEZ-MAQUEOA, A. et al. Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Research International, 130, 2020, 108909.
[18] MENG, L. et al. Effect of high hydrostatic pressure on the bioactive compounds, antioxidant activity and in vitro digestibility of cooked black rice during refrigerated storage. Journal of Cereal Science, 86, 2019, p. 54-59.
[19] MARCOS, B. et al. Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, 76(1), 2007, p. 46-53.
[20] MANASSERO, C.A. et al. High hydrostatic pressure treatment improves physicochemical properties of calcium- and soybean protein-added peach juice. LWT- Food Science and Technology, 101, 2019, p. 54-60.
[21] UNITED STATES DEPARTMENT OF AGRICULTURE (USDA). High pressure processing (HPP) and inspection program personnel (IPP) verification responsibilities. FSIS, Directive, 2012, 6120.1.
[22] BOVER-CID, S. et al. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiology, 28(4), 2011, p. 804-809.
[23] YE, R. and HARTE, F. High pressure homogenization to improve the stability of casein-hydroxypropyl cellulose aqueous systems. Food Hydrocolloids, 35, 2014, p. 670-677.
[24] JIN, S. et al. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresource Technology, 181, 2015, p. 270-274.
[25] SUÁREZ-JACOBO, A. et al. Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chemistry, 127(2), 2011, p. 447-454.
[26] CALLIGARIS, S. et al. Study on the applicability of high-pressure homogenization for the production of banana juices. LWT-Food Science and Technology, 45(1), 2012, p. 117-121.
[27] DUMAY, E. et al.Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science and Technology, 31(1), 2013, p.13-26.
[28] MARESCA, P. et al. Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. Journal of Food Engineering, 104(3), 2011, p. 364-372.
[29] VELÁZQUEZ-ESTRADA, R.M. et al. Impact of ultra high pressure homogenization on pectin methylesterase activity and microbial characteristics of orange juice: A comparative study against conventional heat pasteurization. Innovative Food Science and Emerging Technologies, 13, 2012, p.100-106.
[30] LIU, H.H. and KUO, M.I. Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocolloids, 52, 2016, p. 741-748.
[31] GUAN, Y. et al. Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science and Emerging Technologies, 36, 2016, p. 320-329.
[32] DENOYA, G.I. et al. Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innovative Food Science and Emerging Technologies, 33, 2015, p. 84-93.
[33] DENOYA, G.I. et al. Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing: Implications on the freshness condition. Innovative Food Science and Emerging Technologies, 36, 2016, p. 212–220.
[34] DENOYA, G.I. et al. Suitability of different varieties of peaches for producing minimally processed peaches preserved by high hydrostatic pressure and selection of process parameters. LWT-Food Science and Technology, 78, 2017, p. 367-372.
[35] MIGUEL-PINTADO, C. et al. Effect of hydrostatic high pressure processing on nectarine halves pretreated with ascorbic acid and calcium during refrigerated storage. LWT-Food Science and Technology, 54(1), 2013, p.278-284.
[36] KAUSHIK, N. et al. Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science and Emerging Technologies, 22, 2014, p. 40-50.
[37] GAO, G. et al. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food and Bioproducts Processing, 100(17), 2016, p. 221-229.

[38] VAN-BUGGENHOUT, S. et al. Influence of high-pressure homogenization on functional properties of orange pulp. Innovative Food Science and Emerging Technologies, 30, 2015, p. 51-60.
[39] VALVERDE, M.T. et al. Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality. Journal of Food Engineering, 98(4), 2010, p. 421-428.
[40] ABID, M. et al. Synergistic impact of sonication and high hydrostatic pressure on microbial and enzymatic inactivation of apple juice. LWT-Food Science and Technology, 59(1), 2014, p. 70-76.
[41] BAYINDIRLI, A. et al. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Food Control, 17(1), 2006, p. 52-58.
[42] GRAUWET, T. et al. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Science and Technology, 75, 2017, p. 85-92.
[43] EVELYN. et al. Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control, 59, 2016, p. 530-537.
[44] POREBSKA, I. et al. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73, 2017, p. 24-30.

[45] JUAREZ-ENRIQUEZ, E. et al. Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. LWT-Food Science and Technology, 62(1), 2015, p. 915-919.
[46] KARACAM, H. et al. Effect of high pressure homogenization (micro fluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT-Food Science and Technology, 64, 2015, p. 932-937.
[47] PLAZA, L. et al. Carotenoid and fl avanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fi elds and low pasteurization. LWT-Food Science and Technology, 44(4), 2011, p. 834-839.
[48] STINCO, C.M. et al. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 331, 2020, 127259.
[49] DE ANCOS, B. et al. Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges Navel and the red-fleshed Cara Cara. Food Research International, 132, 2020, 109105.
[50] SILVA, F.V.M and EVELYN. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control, 62, 2016, p. 365-372.
[51] CAMPOS, F.P. and CRISTIANINI, M. Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenisation. Innovative Food Science and Emerging Technologies, 8, 2007, p. 226-229.
[52] TAHIRI, I. et al. Inactivation of food spoilage bacteria and Escherichia coli O157: H7 in phosphate buffer and orange juice using dynamic high pressure. Food Research International, 39, 2006, p. 98-105.
[53] BARBA, F.J. et al. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International, 50(2), 2013, p. 545-549.
[54] ZHANG, C. et al. Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 2011, p. 254-260.
[55] LABOISSIÈRE, L.H.E.S. et al. Effects of high hydrostatic pressure (HHP) on sensory characteristics of yellow passion fruit juice. Innovative Food Science and Emerging Technologies, 8(4), 2007, p. 469-477.
[56] UCKOO, R.M. et al. High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (Citrus paradisi Macfad) juice. Innovative Food Science and Emerging Technologies, 18, 2013, p. 7-14.
[57] PÉREZ-PULIDO, R. et al. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, 196, 2015, p. 62-69.
Cómo citar
Martinez Giron, J., Figueroa Sepúlveda, K., & Castillo Robles, N. Z. (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2), 269-283. https://doi.org/10.18684/bsaa.v19.n2.2021.1772
Publicado
2021-06-01
Sección
Artículos de Revisiòn

Más sobre este tema