Biomasa de Eucalyptus globulus como materia prima en la obtención de biocombustible líquido

  • Luisa Fernanda Navarrete Rodríguez Universidad Libre - Bogotá
  • Ángela María Moreno Tovar Universidad Libre
  • Andrés David Vera Barbosa Universidad Libre
  • Edwin Alberto Bulla Pereira Universidad Libre
  • Obradith Caicedo Orjuela Universidad Libre
Palabras clave: Biocombustibles, Energías renovables, Biomasa de eucalipto, Pirólisis, Bioaceite, Gestión de residuos, Conversión Termoquímica, Material lignocelulósico, Energía de biomasa, Poder calorífico

Resumen

La contaminación atmosférica y el acelerado deterioro ambiental por el creciente uso de combustibles fósiles, ha direccionado las investigaciones en el campo energético hacía la búsqueda de fuentes alternativas, renovables, eficientes y sobre todo más amigables con el medio ambiente. Entre la materia prima que cobra gran interés en la generación de biocombustibles, se encuentran los residuos lignocelulósicos que actualmente se producen en abundantes cantidades, ya sea por simple acción de la naturaleza o porque hacen parte de la cadena agroindustrial de una región dada. Es por ello que en el presente trabajo se evaluó la biomasa de Eucalyptus globulus, como fuente de bajo costo y amplia disponibilidad en la obtención de biocombustible líquido, para lo cual se llevó a cabo una caracterización física y química preliminar teniendo en cuenta especificaciones establecidas en normatividad del sector. Se realizaron ensayos de conversión termoquímica por medio de una pirólisis en atmósfera de N2 y a través de la aplicación de un diseño experimental factorial ( ) contemplando la influencia de variables experimentales tales como tiempo de residencia y temperatura, fue posible obtener a 550 ºC y durante 20 min de reacción, un bioaceite con un rendimiento máximo del 45,2 % y cuyas propiedades físicas y químicas se encuentran dentro del rango estimado en literatura para biocombustibles de origen lignocelulósico, tal es el caso del poder calorífico (16,7 MJ/kg). Por lo tanto, la biomasa de Eucalyptus globulus puede ser considerada como materia prima con potencial a ser explorado en la generación de energéticos. 

 

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Ciencias e Ingeniería, Energía renovable

Lenguajes:

Español; Castellano

Referencias bibliográficas

AGOSTINHO-DA SILVA, D.; ELOY, E.; OTOMAR-CARON, B.; TRUGILHO, F. Elemental Chemical Composition of Forest Biomass at Different Ages for Energy Purposes, Floresta Ambiente, v. 26, n. 4, 2019, e20160201.https://doi.org/10.1590/2179-8087.020116

ALVAREZ-CHAVEZ, B.; GODBOUT, S.; PALACIOS-RIOS, J.; LE ROUX, E.; RAGHAVAN, V. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: A critical review. Biomass and Bionergy, v. 128, 2019, e105333.https://doi.org/10.1016/j.biombioe.2019.105333

CARRILLO, I.; MENDONÇA, R.T.; AGO, M.; ROJAS, O.J. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, v. 25, 2018, p. 1011–1029. https://doi.org/10.1007/s10570-018-1653-2

DE PAULA-PROTÁSIO, T.; SCATOLINO, M.V.; DE ARAÚJO, A.C.C.; DE OLIVEIRA, A.F.C. F.; DE FIGUEIREDO, I.C.R.; DE ASSIS, M.R.; TRUGILHO, P.F. Assessing Proximate Composition, Extractive Concentration, and Lignin Quality to Determine Appropriate Parameters for Selection of Superior Eucalyptus Firewood. Bioenergy Research, v. 12, 2019, p. 626–641. https://doi.org/10.1007/s12155-019-10004-x

EVANGELISTA-SILVA, V., NOGUEIRA, T.A.R.; ABREU-JUNIOR, C.H.; HE, Z.; BUZETTI, S.; LACLAU, J.P.; TEXEIRA-FILHO, M.C.M.; GRILLI, E.; MURGIA, I.; CAPRA, G.F. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations. Forest Ecology and Management, v. 455, 2020, e117673.https://doi.org/10.1016/j.foreco.2019.117673

FERNANDES, F.; MATOS, S.; GASPAR, D.; SILVA, L.; PAULO, I.; VIEIRA, S.; PINTO, P.C.R.; BORDANO, J.; DOS SANTOS, R.G. Boosting the higher heating value of Eucalyptus globulus via thermochemical liquefaction. Sustainability, v. 13 n. 7, 2021, p.1–10. https://doi.org/10.3390/su13073717

FU, S.; CHEN, H.; YANG, J.; YANG, Z. Kinetics of thermal pyrolysis of Eucalyptus bark by using thermogravimetric-Fourier transform infrared spectrometry technique. Journal of Thermal Analysis and Calorimetry, v. 139, 2020, p. 3527–3535. https://doi.org/10.1007/s10973-019-08763-y

GIUDICIANNI, P.; GARGIULO, V.; GROTTOLA, C.M.; ALFÈ, M.; FERREIRO, A.I.; MENDES, M.A.A.; FAGNANO, M.; RAGUCCI, R. Inherent Metal Elements in Biomass Pyrolysis: A Review. Energy Fuels, v. 35, n. 7, 2021, p. 5407–5478.https://doi.org/10.1021/acs.energyfuels.0c04046

GOMES, D.G.; TEIXEIRA, J.A.; DOMINGUES, L. Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds. Applied Energy, v. 303, 2021, e117662.https://doi.org/10.1016/J.APENERGY.2021.117662

GONZALEZ-BENECKE, C.A.; FERNÁNDEZ, M.P.; ALBAUGH, T.J.; AHUMADA, R.; BOWN, H. E.; GAYOSO, J.; GERDING, V.; MARDONES, O.B.; RODRIGUEZ, A.R.; RUBILAR, R. General above-stump volume and biomass functions for Pinus radiata, Eucalyptus globulus and Eucalyptus nitens. Biomass and Bioenergy, v. 155, 2021, e106280.htts://doi.org/10.1016/J.BIOMBIOE.2021.106280

GUIN, L. Estudio de los procesos de Pilorisis-Gasificación de residuos agrícolas del cultivo de henequén [Tesis de Maestría en Ciencias en Energía Renovable]. Mérdida (México): Centro de Investigación Científica de Yucatán (CICY), 2018, 74 p.

https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/1173/1/PCER_M_Tesis_2018_Guin_Lee.pdf

GUPTA, S.; MONDAL, P.; BABU, V.; DALAI, A. Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review Environmental Technology & Innovation, v. 21, 2021, e 101276.https://doi.org/10.1016/j.eti.2020.101276

HOANG, A.T.; ONG, H.C.; FATTAH, I.M.R.; CHONG, C.T.; CHENG, C.K.; SAKTHIVEL, R.; OK, Y.S. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, v. 223, 2021, e106997. https://doi.org/10.1016/j.fuproc.2021.106997

HU, X.; GHOLIZADEH, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, v. 39, 2019, p.109–143.https://doi.org/10.1016/j.jechem.2019.01.024

IGNACIO, L.H.; DA S.; SANTOS, P.E. DE A.; DUARTE, C.A.R. An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil. Renewable and Sustainable Energy Reviews, v. 103, 2019, p.361–369.https://doi.org/10.1016/j.rser.2018.12.053

LALOON, K.; JUNSIRI, C.; SANCHUMPU, P.; ANSUREE, P. Factors affecting the biomass pellet using industrial eucalyptus bark residue. Biomass Conversion and Biorefinery, 2022, p.1-13.https://doi.org/10.1007/s13399-022-03126-4

KUMAR, K.; ROY, C.; YADAV, D.; VERMA, R.; DUTTA, S.; SMRITI, K.; SANGMESH, B.; KARUPPASAMY, K. Renewable and sustainable clean energy development and impact on social , economic , and environmental health. Energy Nexus, v. 7, 2022, e100118. https://doi.org/10.1016/j.nexus.2022.100118

KUMAR, R.; STREZOV, V.; WELDEKIDAN, H.; HE, J.; SINGH,S.; KAN, T., DASTJERDI, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, v. 123, 2020, e109763. https://doi.org/10.1016/j.rser.2020.109763

KUMAR, P.; SUBBARAO, P.M. V.; KALA, L.D.; VIJAY, V.K. Thermogravimetry and associated characteristics of pearl millet cob and eucalyptus biomass using differential thermal gravimetric analysis for thermochemical gasification. Thermal Science and Engineering Progress, v. 26, 2021, e101104. https://doi.org/10.1016/j.tsep.2021.101104

MACHADO, H.; CRISTINO, A.; ORIŠKOVÁ, S.; GALHANO, R. Review Bio-Oil: The Next-Generation Source of Chemicals. Reactions, v. 3, 2022, p.118 - 137.https://doi.org/10.3390/reactions3010009

MALICO, I.; GONÇALVES, A.C. Eucalyptus globulus Coppices in Portugal: Influence of Site and Percentage of Residues Collected for Energy. Sustainability, v. 13, 2021, 5775. https://doi.org/10.3390/su13115775

MINISTERIO DEL MEDIO AMBIENTE (MINAMBIENTE). Plan de Acción para la Gestión Sostenible de la Biomasa Residual. 2022https://economiacircular.minambiente.gov.co/wp-content/uploads/2022/04/Plan-de-Accion-para-la-Gestion-Sostenible-de-la-Biomasa-Residual.pdf [Consultado Marzo 12 de 2022].

PEGORETTI-LEITE DE SOUZA, H.J.; MUÑOZ, F.; MENDONÇA, R.T.; SÁEZ, K.; OLAVE, R.; SEGURA, C.; DE SOUZA, D.P.L; PROTÁSIO, T.D.P.; RODRÍGUEZ-SOALLEIRO, R. Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass. Renewable Energy, v. 163, 2021, p.1802–1816. https://doi.org/10.1016/j.renene.2020.10.065

PIRRAGLIA, A.; GONZALEZ, R.; SALONI, D.; WRIGHT, J.; DENIG, J. Fuel properties and suitability of Eucalyptus benthamii and Eucalyptus macarthurii for torrefied wood and pellets. BioResources, v. 7, n. 1, 2012, p.217–235.

POPESCU, C.M.; POPESCU, M.C.; SINGUREL, G.; VASILE, C.; ARGYROPOULOS, D.S.; WILLFOR, S. Spectral characterization of eucalyptus wood. Applied Spectroscopy, v. 61 n. 11, 2007, p.1168–1177.https://doi.org/10.1366/000370207782597076

RIBEIRO, L.A.B.; MARTINS, R.C.; MESA-PÉREZ, J.M.; BIZZO, W.A. Study of bio-oil properties and ageing through fractionation and ternary mixtures with the heavy fraction as the main component. Energy, v. 169, 2019, p.344–355.https://doi.org/10.1016/j.energy.2018.12.042

RIJO, B.; SOARES-DIAS, A.P.; RAMOS, M.; AMEIXA, M. Valorization of forest waste biomass by catalyzed pyrolysis. Energy, v. 243, 2022, e122766.https://doi.org/10.1016/j.energy.2021.122766

SAMAL, B.; VANAPALLI, K.R.; DUBEY, B.K.; BHATTACHARYA, J.; CHANDRA, S.; MEDHA, I. Influence of process parameters on thermal characteristics of char from co-pyrolysis of eucalyptus biomass and polystyrene: Its prospects as a solid fuel. Energy, v. 232, 2021, e121050. https://doi.org/10.1016/j.energy.2021.121050

SINGH, R.K.; SHRIVASTAVA, D.K.; SARKAR, A.; CHAKRABORTY, J.P. Co-pyrolysis of eucalyptus and sodium polyacrylate: optimization and synergistic effect. Fuel, v. 277, 2020, e118115.https://doi.org/10.1016/j.fuel.2020.118115

SOUZA, A.G.; DE LIMA, G.F.; RODRIGUES, R.C.L.B.; CESARINO, I.; LEÃO, A.L.; ROSA, D.S. A New Approach for Conversion of Eucalyptus Lignocellulosic Biomass into Cellulose Nanostructures: A Method that Can Be Applied in Industry. Journal of Natural Fibers, v. 18, n. 10, 2021, p.1501–1511. https://doi.org/10.1080/15440478.2019.1691125

UNIVERSIDAD NACIONAL DE COLOMBIA. Proyecto i-COOP B20431-CSIC (2020-2021). Instituto Eduardo Torroja (España): 2020-2021.https://proyectovisbogota.ietcc.csic.es/?page_id=376 [Consultado agosto 3 de 2022]

WANG, H.; WANG, B.; SUN, D.; SHI, Q.; ZHENG, L.; WANG, S.; LIU, S.; XIA, R.; SUN, R. Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, v. 12, n. 5, 2019, p.1059–1068.https://doi.org/10.1002/cssc.201802592

XU, J.; LIAO, Y.; LIN, Y.; MA, X.; YU, Z. Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe co-modified HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, v. 139, 2019, p.96–103.https://doi.org/10.1016/j.jaap.2019.01.014

YANG, Q.; ZHANG, H.; WANG, L.; LING, F.; WANG, Z.; LI, T.; HUANG, J. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests. Plant Diversity, v. 43, n. 4, 2021, p.264 - 274. https://doi.org/10.1016/j.pld.2021.03.003

YOGALAKSHMI, K.N.; DEVI T,P.; SIVASHANMUGAM, P.; KAVITHA S, YUKESH KANNAH R.; SUNITA, V. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, v. 286 (Part 2), 2022, e131824.https://doi.org/10.1016/j.chemosphere.2021.131824

YORO, K.O.; DARAMOLA, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. En: MOHAMMAD REZA RAHIMPOUR, MOHAMMAD FARSI, MOHAMMAD AMIN MAKAR; Advances in Carbon Capture. Methods, Technologies and Applications. N.Y. (U.S.A.): Elsevier, 2020, 28 p. https://doi.org/10.1016/b978-0-12-819657-1.00001-3

YUAN, J.M.; LI, H.; XIAO, L.P.; WANG, T.P.; REN, W.F.; LU, Q.; SUN, R.C. Valorization of lignin into phenolic compounds via fast pyrolysis: Impact of lignin structure. Fuel, v. 319, 2022, e123758. https://doi.org/10.1016/j.fuel.2022.123758

ZHENG, A.; XIA, S.; CAO, F.; LIU, S.; YANG, X.; ZHAO, Z.;TIAN, Y.; LI, H. Directional valorization of eucalyptus waste into value-added chemicals by a novel two-staged controllable pyrolysis process. Chemical Engineering Journal, v. 404, 2021, e127045. https://doi.org/10.1016/j.cej.2020.127045

Cómo citar
Navarrete Rodríguez, L. F., Moreno Tovar, Ángela M., Vera Barbosa, A. D., Bulla Pereira, E. A., & Caicedo Orjuela, O. (2023). Biomasa de Eucalyptus globulus como materia prima en la obtención de biocombustible líquido. Biotecnología En El Sector Agropecuario Y Agroindustrial, 22(1), 17–28. https://doi.org/10.18684/rbsaa.v22.n1.2024.2221
Publicado
2023-08-30
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: