El huevo de gallina y su procesamiento industrial: una revisión

  • Lina Marcela Ramírez Crespo Estudiante
  • Misael Cortés Rodríguez Coautor https://orcid.org/0000-0003-3407-1635
  • Adriana Del Rosario Micanquer Carlosama Universidad Nacional de Colombia (Medellín)
Palabras clave: Huevo de gallina, Tratamientos térmicos, Secado, Propiedades funcionales, Gallus domesticus, Clara, Yema, Proteína

Resumen

El huevo es un alimento con una gran cantidad de nutrientes para ser utilizados por nuestro organismo. El objetivo de la revisión es suministrar información general sobre el huevo de gallina y su relación con la salud; además, revisar el estado de los tratamientos térmicos y tecnologías emergentes aplicadas con el fin de generar valor en productos del sector avícola. La revisión se realizó sobre bases de datos de revistas científicas adscritas a Science Direct, Scopus, Scielo y Redalyc, durante un periodo comprendido entre 2013 y 2020. Dado que el huevo se considera un alimento de alto riesgo para la salud y un producto con una variedad de propiedades funcionales, en los últimos años, se ha identificado una tendencia en aplicar tratamientos térmicos que permitan obtener un producto seguro microbiológicamente para los consumidores y con el menor efecto en dichas propiedades para ser utilizado por la industria. En general, el huevo es una materia prima fácilmente procesable a través de diferentes tecnologías, que permiten obtener productos líquidos o sólidos para ser utilizados en nuevos productos procesados. El uso de estas tecnologías permite reducir los costos operativos y mejorar la calidad del producto.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Ingeniería, Alimentos

Lenguajes:

Español

Referencias bibliográficas

ABEYRATHNE, E.; HUANG, X.; AHIN, D.U. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides–A review. Poultry science, v. 97, n. 4, 2018, p. 1462-1468.https://doi.org/10.3382/ps/pex399

AHIM, I.; ALI, R.; HABIB, A.; GIBRIL, S. Evaluation of Egg Quality Conditions in Omdurman Locality. Journal of Applied Veterinary Sciences, v. 4, n. 2, 2019, p. 1-5.https://doi.org/10.21608/JAVS.2019.62645

ALAMPRESE, CRISTINA. The effects of novel pasteurization technologies on egg product functionalities. Faculty of Agricultural and Food Sciences, Department of Food, Environmental and Nutritional Sciences (DeFENS). Milan (Italy): University of Milan, 2015, p. 1–8.

ALAMPRESE, C.; CIGARINI, M.; BRUTTI, A. Effects of ohmic heating on technological properties of whole egg. Innovative Food Science & Emerging Technologies, v. 58, n. 2019, p. 1-8.https://doi.org/10.1016/j.ifset.2019.102244

ALAVI, F.; TIAN, Z.; CHEN, L.; EMAD-DJOMEHH, Z. Effect of CaCl2 on the stability and rheological properties of foams and high-sugar aerated systems produced by preheated egg white protein. Food Hydrocolloids, 2020, p. 1-12.https://doi.org/10.1016/j.foodhyd.2020.105887

AMERICAN EGG BOARD. The incredible edible egg eggcyclopedia. Egg sofety, and nutrition, [online], 2020. Disponible en: https://www.aeb.org/ [Citado 2 de abril de 2020]

ALJOHI, H.; DOPLER-NELSON, M.; CIFUENTES, M.; WILSON, T.A. The consumption of 12 Eggs per week for 1 year does not alter fasting serum markers of cardiovascular disease in older adults with early macular degeneration. Journal of Nutrition and Intermediary Metabolism, v. 15, 2019, p. 35-41.https://doi.org/10.1016/j.jnim.2018.11.004

AU, C.; WANG, T.; ACEVEDO, N.C. Development of a low resolution HNMR spectroscopic technique for the study of matrix mobility in fresh and freeze-thawed hen egg yolk. Food chemistry, v. 204, 2016, p. 159-166.https://doi.org/10.1016/j.foodchem.2016.02.085

AVICOLA NACIONAL S.A. Egg product development process, 2018. Actualizado 28 de enero de 2020.

BARBA, F.; PARNIAKOV, O.; PEREIRA, S.; WIKTOR, A.; GRIMI, N.; BOUSSETTA, N.; SARAVIA, J. A.; RASO, J.; MARTIN-BELLOSO, O.; WITROWA-RAJCHERT, D.; LEBOVKA, N.; VOROBIEV, E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, v. 77, n. 4, 2015, p. 773–798. https://doi.org/10.1016/j.foodres.2015.09.015

BABA, K.; KAJIWARA, T.; WATANABE, S.; KATSUKI, S.; SASAHARA, R.; INOUE, K. Low‐Temperature Pasteurization of Liquid Whole Egg using Intense Pulsed Electric Fields. Electronics and communications in Japan, v. 101, n. 2, 2018, p. 87-94.https://doi.org/10.1002/ecj.12053

BELYAVIN, C. Eggs: Use in the Food Industry. Encyclopedia of Food and Health, 2016, p. 476-479.

BETORET, E.; BETORET, N.; ROCCULI, P.; DALLA ROSA, M. Strategies to improve food functionality: Structure-property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science and Technology, v. 46, n. 1, 2015, p. 1–12.https://doi.org/10.1016/j.tifs.2015.07.006

CHANG, C.; XU, Y.; SHI, M.; SU, Y.; LI, X.; LI, J.; YANG, Y. Effect of dry-heat and guar gum on properties of egg white powder: Analysis of forming capacity and baking performance. Food Hydrocolloids, v. 99, 2020, p. 1-6.

https://doi.org/10.1016/j.foodhyd.2019.105333

CHEMAT, F.; ROMBAUT, N.; SICAIRE, A.G.; MEULLEMIESTRE, A.; FABIANO-TIXIER, A.; ABERT-VIAN, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, v. 34, 2017, p. 540-560.https://doi.org/10.1016/j.ultsonch.2016.06.035

CHUNG-YI, W.; HSIAO-WEN, H.; CHIAO-PING H.; BINGHUEI-BARRY, Y. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology, Critical Reviews. Food Science and Nutrition, v. 56, n. 4, 2016, p. 527-540.

https://doi.org/10.1080/10408398.2012.745479

CLAYTON, Z.; FUSCO, E.; KERN, M. Egg consumption and heart health: A review. Nutrition, v. 37, n. 2017, p. 79–85.

https://doi.org/10.1016/j.nut.2016.12.014

CORTÉS, S. El huevo: Aliado nutricional durante el ciclo vital. El huevo en la mira 2. 2 ed. Bogotá (Colombia): Federación Nacional de Avicultores, 2015, p. 1–100.

DE SOUZA, P.M.; MÜLLER, A.; BENIAICH, A.; MAYER-MIEBACH, E.; OEHLKE, K.; STAHL, M.; GREINER, R.; FERNÁNDEZ, A. Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor. Innovative Food Science and Emerging Technologies, v. 32, 2015, p. 156–164.https://doi.org/10.1016/j.ifset.2015.09.004

DUAN, X.; LI, J.; ZHANG, Q.; ZHAO, T.; LI, M.; XU, X.; LIU, X. Effect of a multiple freeze-thaw process on structural and foaming properties of individual egg white proteins. Food chemistry, v. 228, n. 2017, p. 243-248. https://doi.org/10.1016/j.foodchem.2017.02.005

DUFFULER, P.; GIARRATANO, M.; NADERI, N.; SUWAL, S.; MARCINIAK, A.; PERREAULT, V.; OFFRETF, C.; BRISSONA, G.; HOUSE, J.; POULIOT, Y.; DOYEN, A. High hydrostatic pressure induced extraction and selective transfer of β-phosvitin from the egg yolk granule to plasma fractions. Food Chemistry, v. 321, 2020, p. 1-8.https://doi.org/10.1016/j.foodchem.2020.126696

DUSSAILLANT, C.; ECHEVERRÍA, G.; ROZOWSK, J.; VELASCO, N.; ARTEAGA, A.; RIGOTTI, A. Egg intake and cardiovascular disease: a scientific literature review. Nutrición Hospitalaria, v. 34, n. 3, 2017, p. 710–718.http://dx.doi.org/10.20960/nh.473

EDDIN, A.; IBRAHIM, S.; TAHERGORABI, R. Egg quality and safety with an overview of edible coating application for egg preservation. Food chemistry, v. 296, 2019, p. 29-39. https://doi.org/10.1016/j.foodchem.2019.05.182

ESPINA, L.; MONFORT, S.; ÁLVAREZ, I.; GARCÍA-GONZALO, D.; PAGÁN, R. Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. International Journal of Food Microbiology, v. 189, 2014, p. 119–125. https://doi.org/10.1016/j.ijfoodmicro.2014.08.002

FERNÁNDEZ-MARTÍN, F.; PÉREZ-MATEOS, M.; DADASHI, S.; GÓMEZ-GUILLÉN, C.; SANZ, P. Impact of magnetic assisted freezing in the physicochemical and functional properties of egg components. Part 1: Egg white. Innovative Food Science and Emerging Technologies, v. 44, 2017, p. 131-138.https://doi.org/10.1016/j.ifset.2017.07.004

FERNÁNDEZ-MARTÍN, F.; PÉREZ-MATEOS, M.; DADASHI, S.; GÓMEZ-GUILLÉN, C.; SANZ, P. Impact of magnetic assisted freezing in the physicochemical and functional properties of egg components. Part 2: Egg yolk. Innovative Food Science and Emerging Technologies, v. 49, 2018, p. 176-183.https://doi.org/10.1016/j.ifset.2017.11.006

FUERTES-GARCÍA, A. Egg consumption and cardiovascular risk. Nutrición Hospitalaria, v. 33, n. 4, 2016, p. 41–43.

http://dx.doi.org/10.20960/nh.344

FU, X.; HUANG, X.; JIN, Y.; ZHANG, S.; MA, M. Characterization of enzymatically modified liquid egg yolk: Structural, interfacial and emulsifying properties. Food Hydrocolloids, v. 105, 2020, p. 1-8.https://doi.org/10.1016/j.foodhyd.2020.105763

GARCÉS-RIMÓN, M.; SANDOVAL, M.; MOLINA, E.; LÓPEZ-FANDIÑO, R.; MIGUEL, M. Egg protein hydrolysates: New culinary textures. International Journal of Gastronomy and Food Science, v. 3, 2016, p. 17–22. https://doi.org/10.1016/j.ijgfs.2015.04.001

GARCÍA, D.; COLAS, M.; LÓPEZ, W.; PÉREZ, E.; SÁNCHEZ, A.; LAMAZARES, M.; GRANDÍA, R. El peso corporal y su efecto sobre indicadores bioproductivos en gallinas white leghorn L33. Rev Med Vet Zoot, v. 63, n. 3, 2016, p. 188–200.http://dx.doi.org/10.15446/rfmvz.v63n3.62714

GAZOLU-RUSANOVA, D.; MUSTAN, F.; VINAROV, Z.; TCHOLAKOVA, S.; DENKOV, N.; SOYANOV, S.; DE FOLTER, J.W. Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions. Food Hydrocolloids, v. 99, 2020, p. 1-13. https://doi.org/10.1016/j.foodhyd.2019.105319

GHARBI, N.; LABBAFI, M. Effect of processing on aggregation mechanism of egg white proteins. Food Chemistry, v. 252, 2018, p. 126–133. https://doi.org/10.1016/j.foodchem.2018.01.088

GHARBI, N.; LABBAFI, M. Influence of treatment-induced modification of egg white proteins on foaming properties. Food hydrocolloids, v. 90, 2019, p. 72-81.https://doi.org/10.1016/j.foodhyd.2018.11.060

GOILLEUX, A.; PAINE, J.; SUN, D. Emerging technologies for food processing. 2 ed. United States Of America: Elsevier, 2014, p. 629.

HESTER, P. Breeder hen influence on nutrient availability for the embryo and hatchling. Egg Innovations and Strategies for Improvements. 1 ed. United States Of America: Elsevier Inc., 2017, p. 1-646.https://doi.org/10.1016/B978-0-12-800879-9.00006-8

HUANG, L.; WANG, T.; HAN, Z.; MENG, Y.; LU, X. Effect of egg yolk freezing on properties of mayonnaise. Food Hydrocolloids, v. 56, 2016, p. 311–317.https://doi.org/10.1016/j.foodhyd.2015.12.027

IWASHITA, K.; HANDA, A.; SHIRAKI, K. Co-aggregation of ovotransferrin and lysozyme. Food Hydrocolloids, v. 89, 2019, p. 416-424. https://doi.org/10.1016/j.foodhyd.2018.11.022

JAEGER, H.; ROTH, A.; TOEPFL, S.; HOLZHAUSER, T.; ENGEL, K.; KNORR, D.; VOGEL, R.; BANDICK, N.; KULLING, S.; HEINZ, V.; STEINBERG, P. Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science and Technology, v. 55, 2016, p. 84-97. https://doi.org/10.1016/j.tifs.2016.07.007

JAVED, A.; IMRAN, M.; AHMAD, N.; HUSSAIN, A.I. Fatty acids characterization and oxidative stability of spray dried designer egg powder. Lipids in health and disease, v. 17, n. 1, 2018, p. 282. https://doi.org/10.1186/s12944-018-0931-1

JI, S.; AHN, D.; ZHAO, Y.; LI, K.; LI, S.; HUANG, X. An easy and rapid separation method for five major proteins from egg white: successive extraction and MALDI-TOF-MS identification. Food Chemistry, v. 2020, p. 1-32.https://doi.org/10.1016/j.foodchem.2020.126207

JIA, F.; YAN, W.; YUAN, X.; DAI, R.; LI, X. Modified atmosphere packaging of eggs: Effects on the functional properties of albumen. Food Packaging and Shelf Life, v. 22, 2019, p. 1-6.https://doi.org/10.1016/j.fpsl.2019.100377

JUN, S.; YAOYAO, M.; HUI, J.; OBADI, M.; ZHONGWEI, C.; BIN, X. Effects of single-and dual-frequency ultrasound on the functionality of egg white protein. Journal of Food Engineering, v. 277, 2020, p. 1-8.https://doi.org/10.1016/j.jfoodeng.2020.109902

KATEKHONG, W.; CHAROENREIN, S. Influence of spray drying temperatures and storage conditions on physical and functional properties of dried egg white. Drying Technology, v. 36, n. 2, 2018, p. 169-177.https://doi.org/10.1080/07373937.2017.1307218

KATZ, D.; GNANARAJ, J.; TREU, J,; MA, Y.; KAVAK, Y.; NJIKE, V. Effects of egg ingestion on endothelial function in adults with coronary artery disease: A randomized, controlled, crossover trial. American Heart Journal, v. 169, n. 1, 2014, p. 162–169.https://doi.org/10.1016/j.ahj.2014.10.001

KHEMAKHEM, M.; ATTIA, H.; AYADI, M. A. The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel. Food Hydrocolloids, v. 87, 2019, p. 11-19.https://doi.org/10.1016/j.foodhyd.2018.07.041

KULCHAIYAWAT, C.; WANG, C.; YU, C.; HAN, Z.; AND WANG, T. Combination of treatments to improve thermal stability of egg albumen. LWT - Food Science and Technology, v. 72, 2016, p. 267–276.https://doi.org/10.1016/j.lwt.2016.04.047

LECHEVALIER, V.; GUÉRIN-DUBIARD, C.; ANTON, M.; BEAUMAL, V.; BRIAND, E.; GILLARD, A.; LE GOUAR, Y.; MUSIKAPHUN, N.; TANGUY, G.; PASCO, M.; NAU, F.; DUPONT, D. Pasteurisation of liquid whole egg: Optimal heat treatments in relation to its functional, nutritional and allergenic properties. Journal of Food Engineering, v. 195, 2017, p. 137-149. https://doi.org/10.1016/j.jfoodeng.2016.10.007

LEE, J.; PAIK, H. Anticancer and immunomodulatory activity of egg proteins and peptides: a review. Poultry Science, v. 98, n. 12, 2019, p. 6505-6516.https://doi.org/10.3382/ps/pez381

LESNIEROWSKI, G.; STANGIERSKI, J. What's new in chicken egg research and technology for human health promotion: A review. Trends in Food Science and Technology, v. 71, 2018, p. 46-51.https://doi.org/10.1016/j.tifs.2017.10.022

LI, P.; SUN, Z.; MA, M.; JIN, Y.; SHENG, L. Effect of microwave-assisted phosphorylation modification on the structural and foaming properties of egg white powder. LWT, v. 97, 2018, p. 151-156.https://doi.org/10.1016/j.lwt.2018.06.055

LI, P.; SHENG, L.; JIN, Y. Using microwave-assisted phosphorylation to improve foaming and solubility of egg white by response surface methodology. Poultry science, v. 98, n. 12, 2019, p. 7110-7117.https://doi.org/10.3382/ps/pez424

LI, P.; JIN, Y.; SHENG, L. Impact of microwave assisted phosphorylation on the physicochemistry and rehydration behaviour of egg white powder. Food Hydrocolloids, v. 100, 2020, p. 1-8.https://doi.org/10.1016/j.foodhyd.2019.105380

LIU, Y.; OEY, I.; BREMER, P.; CARNE, A.; SILCOCK, P. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Food research international, v. 91, 2017, p. 161-170.https://doi.org/10.1016/j.foodres.2016.12.005

LIU, Y.; OEY, I.; BREMIER, P.; SILCOCK, P.; CARNE, A. Proteolytic pattern, protein breakdown and peptide production of ovomucin-depleted egg white processed with heat or pulsed electric fields at different pH. Food Research International, v. 108, 2018, p. 465-474.https://doi.org/10.1016/j.foodres.2018.03.075

LIU, Y.; OEY, I.; BREMER, P.; SILCOCK, P.; CARNE, A.; MCCONNELL, M. Pulsed electric fields treatment at different pH enhances the antioxidant and anti-inflammatory activity of ovomucin-depleted egg white. Food chemistry, v. 276, 2019, p. 164-173.https://doi.org/10.1016/j.foodchem.2018.10.009

LIU, T.; LV, B.; ZHAO, W.; WANG, Y.; PIAO, C.; DAI, W.; HU, Y.; LIU, J.; YU, H.; SUN, F. Effects of Ultrahigh Temperature Pasteurization on the Liquid Components and Functional Properties of Stored Liquid Whole Eggs. BioMed Research International, 2020. p. 1-10. https://doi.org/10.1155/2020/3465465

LLAVE, Y.; FUKUDA, S.; FUKUOKA, M.; SHIBATA-ISHIWATARI, N.; SAKAI, N. Analysis of color changes in chicken egg yolks and whites based on degree of thermal protein denaturation during ohmic heating and water bath treatment. Journal of Food Engineering, v. 222, 2018, p. 151-161. https://doi.org/10.1016/j.jfoodeng.2017.11.024

MA, Y.; ZHAO, Y.; CHI, Y. Changes in the gel characteristics of two hen egg white powders modified by dry heating and the Maillard reaction during long-term storage. LWT, v. 109, 2019, p. 123-129.https://doi.org/10.1016/j.lwt.2019.04.003

MAGNANI-GRASSI, T.; GIGLIO-PONSANO, E. Desidratação de gemas de ovos por secagem por atomização. Pesquisa Agropecuária Brasileira, v. 50, n. 12, 2015, p. 1186–1191. https://doi.org/10.1590/S0100-204X2015001200008

MAGNAN- GRASSI, T.; DE SIQUEIRA-MARCOS, M.; CAVAZZANA, J.; GIGLIO-PONSANO, E. Deshidratación de claras de huevo por atomización. Ciência Animal Brasileira, v. 17, n. 4, 2016, p. 601–607.

MASURE, H.; WOUTERS, A.; FIERENS, E.; DELCOUR, J. Impact of egg white and soy proteins on structure formation and crumb firming in gluten-free breads. Food Hydrocolloids, v. 95, 2019, p. 406-417.https://doi.org/10.1016/j.foodhyd.2019.04.062

MATTIOLI, S.; ORTENZI, R.; SCUOTA, S.; CARTONI, A.; DAL BOSCO, A.; COTOZZOLO, E.; CASTELLINI, C. Impact of ozone and UV irradiation sanitation treatments on the survival of Salmonella and the physical–chemical characteristics of hen eggs. Journal of Applied Poultry Research, 2020, p. 1 – 11.https://doi.org/10.1016/j.japr.2020.01.004

MATUMOTO-PINTRO, P.; MURAKAMI, A.; VITAL, A.; CROGE, C.; DA SILVA, D.; OSPINA-ROJA, I.; GUERRA, A. Effects of storage time and temperature on lipid oxidation of egg powders enriched with natural antioxidants. Food chemistry, v. 228, 2017, p. 463-468. https://doi.org/10.1016/j.foodchem.2017.02.044

MENON, A.; STOJCESKA, V.; TASSOU, S. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science and Technology, v. 100, 2020, p. 67-76.https://doi.org/10.1016/j.tifs.2020.03.014

NADERI, N.; DOYEN, A.; HOUSE, J.D.; POULIOT, Y. The use of high hydrostatic pressure to generate folate-enriched extracts from the granule fraction of hen’s egg yolk. Food chemistry, v. 232, 2017, p. 253-262.

https://doi.org/10.1016/j.foodchem.2017.03.144

NAHARIAH, N.; LEGOWO, A.; ABUSTAM, E.; HINTONO, A.; HIKMAH, H. Functional Characteristics of Fermented Egg White Powder After Pan-drying at Different Temperatures and Times. International Journal of Poultry Science, v. 17, n. 3, 2018, p. 134–139.https://doi.org/10.3923/ijps.2018.134.139

PANOZZO, A.; MANZOCCO, L.; CALLIGARIS, S.; BARTOLOMEOLI, I.; MAIFRENI, M.; LIPPE, G.; NICOLI, M.C. Effect of high pressure homogenisation on microbial inactivation, protein structure and functionality of egg white. Food Research International, v. 62, 2014, p. 718–725. https://doi.org/10.1016/j.foodres.2014.04.051

PATRIGNANI, F.; VANNINI, L.; SADO-KAMDEM, S.; HERNANDO, I.; MARCO-MOLÉS, R.; GUERZONI, M.; LANCIOTTI, R. High pressure homogenization vs heat treatment: Safety and functional properties of liquid whole egg. Food Microbiology, v. 36, n. 1, 2013, p. 63–69. https://doi.org/10.1016/j.fm.2013.04.004

RAMASWAMY, H.; MARCOTTE, M.; SASTRY S.; ABDELRAHIM, K. Ohmic Heating in Food Processing. Electro-Technologies for Food Processing Series. CRC Press, 2014. p. 1 – 518. ISBN: 1420071084,9781420071085.

RANNOU, C.; QUEVEAU, D.; BEAUMAL, V.; DAVID-BRIAND, E.; LE BORGNE, C.; MEYNIER, A.; ANTON, M.; PROST, C.; SCHUCK, P.; D LOISEL, C. Effect of spray-drying and storage conditions on the physical and functional properties of standard and n-3 enriched egg yolk powders, Journal of Food Engineering, v. 154, 2015, p. 58-68.https://doi.org/10.1016/j.jfoodeng.2014.11.002

RICKE, S.C.; GAST, R.K. Producing Safe Eggs. London (United Kingdom): Elsevier, 2017, 421 p.

ROSELAND, J.; SOMANCHI, M.; BAHADUR, R.; HAYTOWITZ, D.; PEHRSSON, P. Content and variability of vitamin D and iodine in processed egg products in the United States (US). Journal of Food Composition and Analysis, v. 86, 2020, p. 1-35.https://doi.org/10.1016/j.jfca.2019.103379

SALEH, G.; EL DARRA, N.; KHARROUBI, S.; FARRAN, M. Influence of storage conditions on quality and safety of eggs collected from Lebanese farms. Food Control, v. 111, 2020, p. 1-8.https://doi.org/10.1016/j.foodcont.2019.107058

SHAHBAZ, H.; JEONG, B.; KIM, J.; HA, N.; LEE, H.; HA, S.; PARK, J. Application of high pressure processing for prevention of greenish-gray yolks and improvement of safety and shelf-life of hard-cooked peeled eggs. Innovative Food Science and Emerging Technologies, v. 45, 2018, p. 10-17.https://doi.org/10.1016/j.ifset.2017.09.016

SHAN, Y.; TANG, D.; WANG, R.; TU, A.; YI, Y.; WANG, X.; LIU, B.; ZHOU, Y.; HUANG, Q.; LÜ, X. Rheological and structural properties of ovomucin from chicken eggs with different interior quality. Food Hydrocolloids, v. 100, 2020, p. 1-10. https://doi.org/10.1016/j.foodhyd.2019.105393

SHENG, L.; WANG, Y.; CHEN, J.; ZOU, J.; WANG, Q.; MA, M. Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Research International, v. 108, 2018, p. 604- 610.

https://doi.org/10.1016/j.foodres.2018.04.007

SINGH, A.; RAMASWAMY, H. High pressure modification of egg components: Exploration of calorimetric, structural and functional characteristics. Innovative Food Science and Emerging Technologies, v. 32, 2015, p. 45–55. https://doi.org/10.1016/j.ifset.2015.09.010

SPANISH ASSOCIATION OF EGG PRODUCTS INDUSTRIES. SAEPI. ¿What are egg products?. [online], 2020. Disponible en: https://www.inovo.es/que-son-los-ovoproductos/. [citado 2 de abril de 2020].

STEFANOVIĆ, A.B.; JOVANOVIĆ, J.R.; DOJČINOVIĆ, M.B.; LEVIĆ, S.M.; NEDOVIĆ, V.A.; BUGARSKI, B.M.; KNEŽEVIĆ-JUGOVIĆ, Z.D. Effect of the Controlled High-Intensity Ultrasound on Improving Functionality and Structural Changes of Egg White Proteins. Food and Bioprocess Technology, v. 10, n. 7, 2017, p. 1224–1239.https://doi.org./10.1007/s11947-017-1884-5

SUJATA, Y. Egg Powder and Its Quality Control. Online International Interdisciplinary Research Journal, 2014, p. 2249–9598. https://www.semanticscholar.org/paper/Egg-Powder-and-Its-Quality-Control-Sujata/29676396e994986eb8c4d5c584a9de24467da069

SUMASHREE, N.; HIREGOUDAR, S.; NIDONI, U.; RAMAPPA, K.T.; NAIK, N. Study of Proximate Composition, Quality Characteristics and Microbial Quality of Microwave Treated Liquid Whole Egg (LWE) Samples. International Journal of Current Microbiology and Applied Sciences, v. 8, n. 9, 2019, p. 335-342.https://doi.org/10.20546/ijcmas.2019.809.040

UYSAL, R.; BOYACI, I.; SOYKUT, E.; ERTAS, N. Effects of heat treatment parameters on liquid whole egg proteins. Food Chemistry, v. 216, 2017, p. 201-208.https://doi.org/10.1016/j.foodchem.2016.08.050

VALVERDE, D.; LACA, A.; ESTRADA, L.; PAREDES, B.; RENDUELES, M.; DÍAZ, M. Egg yolk and egg yolk fractions as key ingredient for the development of a new type of gels. International Journal of Gastronomy and Food Science, v. 3, 2016, p. 30–37.https://doi.org/10.1016/j.ijgfs.2016.02.001

VIEIRA, D.A.; CABRAL, L.; NORONHA, M.; JÚNIOR, G.; SANT’ANA, A. Microbiota of eggs revealed by 16S RNA-based sequencing: From raw materials produced by different suppliers to chilled pasteurized liquid products. Food control, v. 96, 2019, p. 194-204.https://doi.org/10.1016/j.foodcont.2018.09.016

WAKAMATSU, H.; HANDA, A.; CHIBA, K. Observations using Phosphorus-31 nuclear magnetic resonance (P-NMR) of structural changes in freeze-thawed hen egg yolk. Food chemistry, v. 244, 2018, p. 169-176.

https://doi.org/10.1016/j.foodchem.2017.10.032

WANG, X.; GU, L.; SU, Y.; LI, J.; YANG, Y.; CHANG, C. Microwave technology as a new strategy to induce structural transition and foaming properties improvement of egg white powder. Food Hydrocolloids, v. 101, 2020, p. 1-8.

https://doi.org/10.1016/j.foodhyd.2019.105530

WANG, Y.; SELOMULYA, C. Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology, v. 31, n. 1, 2020, p. 409-415.https://doi.org/10.1016/j.apt.2019.10.034

WEI, X.; LAU, S.; REDDY, B.; SUBBIAH, J. A microbial challenge study for validating continuous radio-frequency assisted thermal processing pasteurization of egg white powder. Food microbiology, v. 85, 2020, p. 1-7.

https://doi.org/10.1016/j.fm.2019.103306

WU, L.; ZHAO, W.; YANG, R.; CHEN, X. Effects of pulsed electric fields processing on stability of egg white proteins. Journal of Food Engineering, v. 139, 2014, p. 13–18.https://doi.org/10.1016/j.jfoodeng.2014.04.008

XIE, Y.; WANG, J.; WANG, Y.; WU, D.; LIANG, D.; YE, H.; CAI, Z.; MAC, M.; GENG, F. Effects of high-intensity ultrasonic (HIU) treatment on the functional properties and assemblage structure of egg yolk. Ultrasonics sonochemistry, v. 60, 2020, p. 1-9.https://doi.org/10.1016/j.ultsonch.2019.104767

XIUFANG, B.; XIAOQIONG, W.; YAN, C.; LIYI, C.; YAGE, X.; ZHENMING, C. Effects of combination treatments of lysozyme and high power ultrasound on the Salmonella typhimurium inactivation and quality of liquid whole egg. Ultrasonics Sonochemistry, v. 60, 2020, p. 1–8. https://doi.org/10.1016/j.ultsonch.2019.104763

ZHANG, W.; LIU, F.; NINDO, C.; TANG, J. Physical properties of egg whites and whole eggs relevant to microwave pasteurization. Journal of Food Engineering, v. 118, n. 1, 2013, p. 62–69.https://doi.org/10.1016/j.jfoodeng.2013.03.003

ZHANG, M.; LI, J.; CHANG, C.; WANG, C.; LI, X.; SU, Y.; YANG, Y. Effect of egg yolk on the textural, rheology and structural properties of egg gels. Journal of Food Engineering, v. 246, 2019, p. 1-6.https://doi.org/10.1016/j.jfoodeng.2018.10.024

ZHU, Y.; VANGA, S.K.; WANG, J.; RAGHAVAN, V. Impact of food processing on the structural and allergenic properties of egg white. Trends in Food Science & Technology, v. 78, 2018, p. 188-96.https://doi.org/10.1016/j.tifs.2018.06.005

Cómo citar
Ramírez Crespo, L. M., Cortés Rodríguez, M. ., & Micanquer Carlosama, A. D. R. (2021). El huevo de gallina y su procesamiento industrial: una revisión. Biotecnología En El Sector Agropecuario Y Agroindustrial, 20(1), 221–239. https://doi.org/10.18684/rbsaa.v20.n1.2022.1438
Publicado
2021-10-12
Sección
Artículos de Revisiòn
QR Code