Obtención de “Snacks” de piña (Ananas Comosus) mediante las técnicas combinadas de Ventana de Refractancia y Fritura con Aire Caliente

  • Alfredo Adolfo Ayala Aponte Universidad del Valle
  • Lina Vanessa Gonzales Universidad del Valle
  • Anna Maria Polania Rivera Universidad del Valle
  • Ana Maria Arroyo Rincón Universidad del Valle
  • Alexander Tobar Suarez Universidad del Valle
  • Alberto Díaz Ortiz
Palabras clave: Snacks, Piña, Cinética, Secado, Ventana de refractancia, Fritura con aire caliente, Actividad de agua, Color, Vitamina C

Resumen

Las técnicas de secado de Ventana de Refractancia (VR) y Fritura con Aire Caliente (AF), permiten obtener snacks de frutas de alta calidad nutricional y fisicoquímica. El propósito de este trabajo fue evaluar las técnicas de secado de WR-AF para obtener “snacks” de piña deshidratada. Se emplearon trozos de piña de la variedad MD2 con geometría triangular (40 mm de lado y 4 mm de espesor). En el secado por WR se emplearon tres temperaturas (70, 80 y 90 °C). Para cada temperatura se modeló la cinética de secado mediante cuatro modelos matemáticos (Newton, Page; Wang & Singh, y Midilli). Se determinó: color, en términos de Luminosidad (L*) y cambio total de color (ΔΕ), actividad de agua (aw), coeficientes de difusión y energía de activación. Para las muestras secadas en la combinación de las técnicas VR-AF, se determinaron las curvas de secado, L*, ΔΕ, aw y vitamina C. En total se realizaron 4 tratamientos en el secado con AF a 100 °C; tres de las cuales fueron muestras tratadas (MT) previamente por WR, y el otro fue muestra no tratada (MNT). Los resultados mostraron que, a mayor temperatura de secado por WR mayor fue el coeficiente de difusión y menor fue el tiempo de secado. Para un contenido de humedad de 9 % (d.b), los tratamientos a 90, 80 y 70 °C requirieron 90, 110 y 130 min de secado, respectivamente. El modelo de Midilli fue el que mejor ajustó las cinéticas de secado. Se observó que las técnicas de VR-AF permitieron obtener menor tiempo de secado, mayor retención de vitamina C y de color respecto a las MNT. Estos resultados indican que la técnica WR-AF es una alternativa viable para producir “snacks” de piña en tiempos mas cortos y con mayor conservación de las características de calidad.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Alimentos, Ingenieria, Secado

Lenguajes:

Español; Castellano

Referencias bibliográficas

AH-HEN, K.; ZAMBRA, C.E.; AGUËRO, J.E.; VEGA-GÁLVEZ, A.; LEMUS-MONDACA, R. Moisture Diffusivity Coefficient and Convective Drying Modelling of Murta (Ugni molinae Turcz): Influence of Temperature and Vacuum on Drying Kinetics. Food and Bioprocess Technology, v. 6, n. 4, 2013, p. 919–930.https://doi.org/10.1007/s11947-011-0758-5

AOAC. Official Methods of Analysis, 13th ed. Association of the Official Agricultural Chemists. Washington D.C. (United States of America): 1980, p. 376-384.

ASHUTOSH, S.C.; SHWETA, S.; ATUL, D.; POWAR. Optimization of pineapple drying based on energy consumption, nutrient retention, and drying time through Multi-Criteria Decision-Making. Journal of Cleaner Production, v. 292, 2021, 135907.https://doi.org/10.1016/j.jclepro.2021.125913

AYALA, A.; CARDENAS, J.D.; TIRADO, D.F. Aloe vera gel drying by Refractance Window: Drying kinetics and High-Quality Retention. Foods, v. 10, 2021, n. 1445, p. 1-16.https://doi.org/10.3390/foods10071445

BERBERT, P.A.; TEREZINHA, M.; DE OLIVEIRA, R.; MARTINAZZO, A.P. Drying of Pineapple Slices in Natura and Pre- Osmodehydrated in Inverted Sugar, v. 32, n. 3, 2016, p. 597–610. https://doi.org/10.14393/BJ-v32n3a2016-26201

BRAGA, V.; GUIDI, L.R.; DE SANTANA, R.C.; ZOTARELLI, M.F. Production and characterization of pineapple-mint juice by spray drying. Powder Technology, v. 375, 2020, p. 409–419. https://doi.org/10.1016/j.powtec.2020.08.012

CORRÊA, P.C.; OLIVEIRA, G.H.H.; BOTELHO, F.M.; GONELI, A.L.D.; CARVALHO, F.M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v. 57, n. 5, 2010, p. 595–601.https://doi.org/10.1590/S0034-737X2010000500005

DOMINGUEZ, P.; MEDINA, J.J.; MIRANDA, L.; LÓPEZ, J.M; ARIZA, M.T.; SORIA, C.; SANTOS, B.; TORRES, E.A.; HERNANDEZ, I. Effect of Planting and Harvesting Dates on Strawberry Fruit Quality under High Tunnels. International Journal of Fruit Science, v. 16, n.1, 2016, p. 228-238.https://doi.org/10.1080/15538362.2016.1219291

IZLI, N.; IZLI, G.; TASKIN, O. Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. Journal of Food, v. 16, n. 1, 2018, p. 213-221.https://doi.org/10.1080/19476337.2017.1381174

JHA, R.K.; PRABHAKAR, P.K.; SRIVASTAV, P.P.; RAO, V.V. Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel. Research in Agricultural Engineering, v. 61, n. 4, 2016, p. 141–149.https://doi.org/10.17221/13/2014-RAE

KAVEH, M.; TAGHINEZHAD, E.; AZIZ, M. Effects of physical and chemical pretreatments on drying and quality properties of blackberry (Rubus spp.) in hot air dryer. Food Science and Nutrition, v. 8, n. 7, 2020, p. 3843–3856.https://doi.org/10.1002/fsn3.1678

LEITON-RAMÍREZ, Y.M.; AYALA-APONTE, A.; OCHOA-MARTÍNEZ, C.I. Physicochemical Properties of Guava Snacks as Affected by Drying Technology. Processes, v. 8, n. 1, 2020, p. 106. https://doi.org/10.3390/pr8010106

MACEDO, L.L.; VIMERCATI, W.C.; DA SILVA-ARAÚJO, C.; SARAIVA, S.H.; TEIXEIRA, L.J.Q. Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, v. 43, n. 49, 2020, p. 1–10. https://doi.org/10.1111/jfpe.13451

MARÍN, B.E.; LEMUS, M.R.; FLORES, M.V.; VEGA, G.A. La rehidratación de alimentos deshidratados. Revista Chilena de Nutrición, v. 33, n. 3, 2006, p. 527–538. https://doi.org/10.4067/S0717-75182006000500009

MARZEC, A.; KOWALSKA, H.; KOWALSKA, J.; DOMIAN, E.; LENART, A. Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules (Basel, Switzerland), v. 25, n. 21, 2020.https://doi.org/10.3390/molecules25215146

MICHALEWICZ, J.S.; HENRIQUEZ, J.R.; CHARAMBA, J.C. Secado de Cajuil (Anacardium Occidentale L.): Estudio Experimental y Modelado de la Cinética de Secado. Información Tecnológica, v. 22, n. 6, 2011, p. 63–74.https://doi.org/10.4067/S0718-07642011000600007

MOHAMMED, S.; EDNA, M.; SIRAJ, K. The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon, v. 6, n. 6, 2020.https://doi.org/10.1016/j.heliyon.2020.e04163

MONTES, E.J.; TORRES, R.; ANDRADE, R.D.; PÉREZ, O.A.; MARIMON, J.L.; MEZA, I.I. Modelado de la cinética de secado de ñame (Dioscorea rotundata) en capa delgada. Ingenieria e Investigacion, v. 28, n. 2, 2008, p. 45–52.

MOUSSAOUI, H.; BAHAMMOU, Y.; TAGNAMAS, Z.; KOUHILA, M.; LAMHARRAR, A.; IDLIMAM, A. Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy, v. 168, 2021, p. 131–140.https://doi.org/10.1016/j.renene.2020.12.046

NEMZER, B.; VARGAS, L.; XIA, X.; SINTARA, M.; FENG, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, v. 262, 2018, p. 242–250.https://doi.org/10.1016/j.foodchem.2018.04.047

OCHOA-MARTÍNEZ, C.I.; QUINTERO, P.T.; AYALA, A.A.; ORTIZ, M.J. Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, v. 109, n. 1, 2012, p. 69–75.https://doi.org/10.1016/j.jfoodeng.2011.09.032

OCHOA-MARTÍNEZ, C.I.; AYALA-APONTE, A. Modelos matemáticos de transferencia de masa en Deshidratación Osmótica. Ciencia y Tecnología Alimentaria, v. 4, n. 5, 2005, p. 330–342.https://doi.org/10.1080/11358120509487660

OLANIPEKUN, B.F.; TUNDE-AKINTUNDE, T.Y.; OYELADE, O.J.; ADEBISI, M.G.; ADENAYA, T.A. Mathematical Modeling of Thin-Layer Pineapple Drying. Journal of Food Processing and Preservation, v. 39, n. 6, 2015, p. 1431–1441. https://doi.org/10.1111/jfpp.12362

OLMOS, A. Cadena regional de piña departamento de Casanare. Yopal (Casanare): Gobernación de Casanare, Secretaria de Agricultura, Ganadería y Medio Ambiente, 2015, p. 1-15.

ONWUDE, D.I.; HASHIM, N.; JANIUS, R.B.; NAWI, N.M.; ABDAN, K. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, v. 15, n. 3, 2016, p. 599–618. https://doi.org/10.1111/1541-4337.12196

ORTIZ-JEREZ, M.J.; GULATI, T.; DATTA, A.K.; OCHOA-MARTÍNEZ, C.I. Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing, v. 95, 2015, p. 237–253.https://doi.org/10.1016/j.fbp.2015.05.010

PONKHAM, K.; MEESO, N.; SOPONRONNARIT, S.; SIRIAMORNPUN, S. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food and Bioproducts Processing, v. 90, n. 2, 2012, p. 155–164. https://doi.org/10.1016/j.fbp.2011.02.008

POVEDA, N. Determinación de la influencia de las zonas de producción sobre el contenido de componentes bioactivos y la capacidad antioxidante de cinco frutas andinas [Tesis Ingeniería Bioquímica]. Ambato (Perú): Universidad Técnica de Ambato, 2014, p. 1-146.https://repositorio.uta.edu.ec/bitstream/123456789/8454/1/BQ%2055.pdf

RAGHAVI, L.M.; MOSES, J.A.; ANANDHARAMAKRISHNAN, C. Refractance window drying of foods: A review. Journal of Food Engineering, v. 222, 2018, p. 267–275.https://doi.org/10.1016/j.jfoodeng.2017.11.032

RAJORIYA, D.; SHEWALE, S.R.; BHAVYA, M.L.; HEBBAR, H.U. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science and Emerging Technologies, v. 66, 2020, 102530.https://doi.org/10.1016/j.ifset.2020.102530

RANI, P.; TRIPATHY, P.P. Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air-dried pineapple slices. Journal of Food Science and Technology, v. 56, n. 11, 2019, p. 4911–4924.https://doi.org/10.1007/s13197-019-03961-w

SALAZAR, D.M.; ÁLVAREZ, F.C.; ACURIO, L.P.; PEREZ, L.V.; ARANCIBIA, M.Y.; CARVAJAL, M.G.; VALENCIA, A.F.; RODRIGUEZ, C.A. Osmotic concentration of pineapple (Cayenne lisse) as a pretreatment for convection drying. IOP Conference Series: Earth and Environmental Science, v. 292, n. 1, 2019.https://doi.org/10.1088/1755-1315/292/1/012039

SETHI, K.; KAUR, M. Effect of osmotic dehydration on physicochemical properties of pineapple using honey, sucrose and honey-sucrose solutions. International Journal of Engineering and Advanced Technology, v. 9, n. 1, 2019, p. 6257–6262.https://doi.org/10.35940/ijeat.A2026.109119

SHAKER, M.A. Comparison between traditional deep-fat frying and air-frying for production of healthy fried potato strips. International Food Research Journal, v 22, n. 4, 2015, p. 1557-1563.

SILVA, K.S.; GARCIA, C.C.; AMADO, L.R.; MAURO, M.A. Effects of Edible Coatings on Convective Drying and Characteristics of the Dried Pineapple. Food and Bioprocess Technology, v. 8, n. 7, 2015, p. 1465–1475.https://doi.org/10.1007/s11947-015-1495-y

SOUZA, D.G.; RESENDE, O.; DE MOURA, L.C.; JUNIOR, W.N.F.; ANDRADE, J.W.D.S. Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, v. 39, n. 2, 2019, p. 176–181.https://doi.org/10.1590/1809-4430-eng.agric.v39n2p176-181/2019

VEGA, A.; URIBE, E.; LEMUS, R.; MIRANDA, M. Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT - Food Science and Technology, v. 40, n. 10, 2007, p. 1698–1707. https://doi.org/10.1016/j.lwt.2007.01.001

VEGA-GÁLVEZ, A.; TELLO-IRELAND, C.; LEMUS-MONDACA, R. Simulación matemática del proceso de secado de la gracilaria chilena (Gracilaria Chilensis). Ingeniare. Revista Chilena de Ingeniería, v. 15, n. 1, 2007.https://doi.org/10.4067/S0718-33052007000100008

VILLAMIZAR, R.H.; QUICENO, M.C.; GIRALDO, G.A. Effect of vacuum frying process on the quality of a snack of mango (Manguifera indica L.). Acta Agronómica, v. 61, n. 1, 2012, p. 40-51.

WU, M.Y.; SHIAU, S.Y. Effect of the Amount and Particle Size of Pineapple Peel Fiber on Dough Rheology and Steamed Bread Quality. Journal of Food Processing and Preservation, v. 39, n. 6, 2015, p. 549–558.https://doi.org/10.1111/jfpp.12260

ZHANG, M.; CHEN, H.; MUJUMDAR, A.S.; TANG, J.; MIAO, S.; WANG, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, v. 57, n. 6, 2017, p. 1239–1255.https://doi.org/10.1080/10408398.2014.979280

ZHANG, Z.; WEI, Q.; NIE, M.; JIANG, N.; LIU, C.; LIU, C.; LI, D.; XU, L. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT Food Science and Technology, v. 96, 2018, p. 357–363.https://doi.org/10.1016/j.lwt.2018.05.061

ZZAMAN, W.; BISWAS, R.; HOSSAIN, M. A. Application of immersion pre-treatments and drying temperatures to improve comprehensive quality of pineapple (Ananas comosus) slices. Heliyon, v. 7, n. 1, 2021.https://doi.org/10.1016/j.heliyon.2020.e05882

Cómo citar
Ayala Aponte, A. A., Gonzales, L. V., Polania Rivera, A. M., Arroyo Rincón, A. M., Tobar Suarez, A., & Díaz Ortiz, A. (2021). Obtención de “Snacks” de piña (Ananas Comosus) mediante las técnicas combinadas de Ventana de Refractancia y Fritura con Aire Caliente. Biotecnología En El Sector Agropecuario Y Agroindustrial, 20(1), 165–178. https://doi.org/10.18684/rbsaa.v19.n2.2021.1879
Publicado
2021-12-15
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: