Osmodeshidratación de Physalis peruviana L. utilizando panela con aplicación de ultrasonido y agitación

  • Lubberto Marceliano Sánchez Universidad Nacional de trujillo
  • Rodolfo Moisés Vegas Niño Universidad Nacional de Trujillo
Palabras clave: Cinética, Coeficiente de difusividad, Transferencia de masa, Osmodeshidratación, Ultrasonido, Agitación, Panela, Physalis peruviana L., Vitamina C, Calcio, Capacidad antioxidante

Resumen

La conservación de alimentos es una de las preocupaciones más importantes de la ingeniería de alimentos y su importancia se refleja en una mayor vida útil de los mismos. En este trabajo se evaluó como afectan la temperatura y la panela en distintas concentraciones sobre los coeficientes de difusividad del agua (De,w) y sólidos (De,s) en la osmodeshidratación (OD) de Physalis peruviana con la aplicación de ultrasonido (40 kHz) y agitación (50–100 rpm). Para tal fin, los frutos se osmodeshidrataron en panela en concentraciones entre 30 y 60 % (en peso) y temperaturas entre 30 y 60 °C por un periodo de 7 horas, al cabo del cual, se procedió a calcular los valores de De,w y De,s. Los resultados muestran que el ultrasonido mejora la pérdida de agua (WL) y ganancia de sólidos (SG) cuyos valores fueron de 14,25 y 46,62 % respectivamente. Los valores de De,w en agitación estuvieron entre 2,004 y 4,694x10-10 m2/s mientras que los De,s variaron entre 1,93 y 4,23 x 10-10 m2/s, en tanto que con ultrasonido se obtuvieron valores de De,w entre 2,76 y 5,90 x 10-10 m2/s y de De,s entre 2,617 y 4,925 x 10-10 m2/s. La influencia de la concentración de panela y temperatura sobre De,w y De,s muestra que es significativa (p<0,05). Por otro lado, en los tratamientos cuyos valores para las variables independientes fueron los más altos, existió una pérdida de vitamina C del 60,23 % para agitación, del 58,67 % para el tratamiento testigo y del 25,47 % con la aplicación de ultrasonido; similar efecto se obtuvo para la capacidad antioxidante. En el tratamiento con ultrasonido se obtuvo una ganancia adicional de calcio, con un incremento del 11,45 %. En consecuencia, el incremento de la temperatura y concentración de agente osmótico incrementa los procesos difusivos de la OD.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

AADIL, RANA-MUHAMMAD; ZENG, XIN-AN; HAN, ZHONG; SUN, DA-WEN. Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, v. 141, n. 3, 2013, p. 3201-3206. https://doi.org/10.1016/j.foodchem.2013.06.008

AGUIRRE-GARCÍA, M.; CORTÉS-ZAVALETA, ORLENDA; RUIZ-ESPINOSA, HECTOR; OCHOA-VELASCO, CARLOS-ENRIQUE; RUIZ-LÓPEZ, IRVING-ISRAEL. The role of coupled water and solute diffusion and product shrinkage during osmotic dehydration. Journal of Food Engineering, v. 331, 2022, p. 111121. https://doi.org/10.1016/j.jfoodeng.2022.111121

ALARCON, ANGELA; PALACIOS, LAURA; OSORIO, CORALIA.; NARVÁEZ, PAULO-CÉSAR; HEREDIA, FRANCISCO; ORJUELA, ALVARO; HERNANZ, DOLORES. Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, v. 340, 2021, p. 128183. https://doi.org/10.1016/j.foodchem.2020.128183

AREDO, VICTOS; ARTEAGA, ANA; BENITES, CKISTHIAN; GERÓNIMO, WAGNER. Comparación entre el secado convectivo y osmoconvectivo en la pérdida de vitamina C de Aguaymanto (Physalis peruviana) con y sin pre-tratamiento de NaOH. Agroindustrial Science, v. 2, n. 2, 2012, p. 126-131. https://doi.org/10.17268/agroind.science.2012.02.01

AZUARA, EBNER; GARCIA, HUGO; BERISTAIN, CÉSAR-IGNACIO. Effect of centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, v. 29, n. 2, 1996, p. 195-199. https://doi.org/10.1016/0963-9969(96)00033-6

AZUARA, EBNER; CORTÉS, RAÚL; GARCIA, HUGO; BERISTAIN, CÉSAR-FIGNACIO. Kinetic model for osmotic dehydration and its relationship with Fick’s Second Law. International Journal of Food Science and Technology, v. 27, 1992, p. 409-418.https://doi.org/10.1111/j.1365-2621.1992.tb01206.x

BARMAN, NIRMALI; BADWAIK, LAXMIKANT. Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, v. 34, 2017, p. 37-44.http://dx.doi.org/10.1016/j.ultsonch.2016.05.014

BAZALAR-PEREDA, MAYRA; NAZARENO, MÓNICA; VITURRO, CARMEN. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the argentinean northern andean region. Plant Foods for Human Nutrition, v. 74, n. 1, 2019, p. 68-75.http://dx.doi.org/10.1007/s11130-018-0702-1

BOZKIR, HAMZA; ERGÜN, AHSEN-RAYMAN; SERDAR, EMINE; METIN, GÜLHAN; BAYSAL, TANER. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, v. 54, 2019, p. 135-141.https://doi.org/10.1016/j.ultsonch.2019.02.006

BRAND-WILLAMS, WENDY; CUVELIER, MARIE-ELISABETH; BERSET, CLAUDETTE. Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenchaft und Technologie, v. 28, n. 1, 1995, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

BROCHIER, BETHANINA; MESQUITA, JULIANA.; ZAPATA-NOREÑA, ACIANO-PELAYO. Study of osmotic dehydration of kiwi fruit using sucrose solution. Brazilian Journal of Food Technology, v. 22, 2019. p. e2018146.https://doi.org/10.1590/1981-6723.14618

CHU, YUANMING; WEI, SAICHAO; DING, ZHAOYANG; MEI, JUN; XIE, JING. Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, v. 11, 2021, p. 1069.https://doi.org/10.3390/agriculture11111069

CICHOWSKA, JOANA; WITROWA-RAJCHERT, DOROTA; STASIAK-RÓŻAŃSKA, LIDIA; FIGIEL, ADAM. Ultrasound-assisted osmotic dehydration of apples in polyols and dihydroxyacetone (DHA) solutions. Molecules, v. 24, 2019, p. 3429.http://dx.doi.org/10.3390/molecules24193429

El-BELTAGI, HOSSAM; MOHAMED, HEBA; SAFWAT, GEHAN; GAMAL, MOHAMMED; MEGAHED, BASMA. Chemical Composition and Biological Activity of Physalis peruviana L., Gesunde Pflanzen, v. 71, 2019. p. 113-122.https://doi.org/10.1007/s10343-019-00456-8

ENCINA, CHRISTIAN; UREÑA, MILBER. Determinación de la máxima retención se ácido ascórbico de la conserva de aguaymanto (Physalis Peruviana) en almíbar aplicando el método superficie de respuesta. Tau alimentario, v. 3, 2007, p. 1-40.

FENG, XINXIN; SUN, JIE; LIU, BANGDI; ZHOU, XINQUN; JIANG, LIHUA; JIANG, WEIBO. Effect of gradient concentration pre-osmotic dehydration on keeping air-dried apricot antioxidant activity and bioactive compounds. Journal of Food Processing and Preservation, 2022, p. e16688. https://doi.org/10.1111/jfpp.16688

FISCHER, GERHARD; MELGAREJO, LUZ-MARINA. The ecophysiology of cape gooseberry (Physalis peruviana l.) - an andean fruit crop. a review. Revista colombiana de ciencias Hortícolas, v. 14, n. 1, 2020, p. 76-89.https://doi.org/10.17584/rcch.2020v14i1.10893

GHELLAM, MOHAMED; ZANNOU, OSCAR; GALANAKIS, CHARIS; ALDAWOUD, TURKI; IBRAIM, SALAM; KOCA, ILKAY. Vacuum-assisted osmotic dehydration of autumn olive berries: Modeling of mass transfer kinetics and quality assessment. Foods, v. 10, n. 10, 2021, p. 2286. https://doi.org/10.3390%2Ffoods10102286

GIANNAKOUROU, MARIA; DERMESONLOUOGLOU, EFIMIA; TAOUKIS, PETROS. Osmodehydrofreezing: An integrated process for food preservation during frozen storage. Foods, v. 9, 2020, p. 1042.http://dx.doi.org/10.3390/foods9081042

GOULA, ATHANASIA; KOKOLAKI, MARIA; DAFTSIOU, ELENI. Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, v. 105, 2017, p. 157-170.https://doi.org/10.1016/j.fbp.2017.07.008

GUINÉ, RAQUEL; GONÇALVES, FERNANDO; OLIVEIRA, SOLANGE.; CORREIA, PAULA. Evaluation of phenolic compounds, antioxidant activity and bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 2020, p. S470-S490.https://doi.org/10.1080/15538362.2020.1741056

KHUWIJITJARU, PRAMOTE; SOMKANE, SUPAWADEE; NAKAGAWA, KYUYA; MAHAYOTHEE, BUSARAKORN. Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods, v. 11, n. 3, 2022, p. 489.https://doi.org/10.3390/foods11030489

KOWALSKA, HANNA; MARZEC, AGATA; DOMIAN, EWA; MASIARZ, EWELINA; CIURZYŃSKA, AGNIESZKA; GALUS, SABINA; MAŁKIEWICZ, ALEKSANDRA; LENART, ANDRZEJ; KOWALSKA, JOLANTA. Physical and sensory properties of japanese quince chips obtained by osmotic dehydration in fruit juice concentrates and hybrid drying. Molecules, v. 25, n. 23, 2020, p. 5504.https://doi.org/10.3390/molecules25235504

LE, DUNG; KONSUE, NATTAYA. Mass transfer behavior during osmotic dehydration and vacuum impregnation of “phulae” pineapple and the effects on dried fruit quality. Current Research in Nutrition and Food Science, v. 9, n. 1, 2021.http://dx.doi.org/10.12944/CRNFSJ.9.1.29

LI, LU; YU, YANGYANG; XU, YUJUAN; WU, JIJUN; YU, YUANSHAN; PENG, JIAN; AN, KEJING; ZOU, BO; YANG, WANYUAN. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT – Food Science and Technology, v. 138, 2021, p. 110653. https://doi.org/10.1016/j.lwt.2020.110653

LI, LINLIN; ZHANG, MIN; WANG, WEIQIN. Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Bioscience, v. 35, 2020, p. 100548.https://doi.org/10.1016/j.fbio.2020.100548

MEHTA, ARYAN; SINGH, AMANJEET; SINGH, AKHAND-PRATAP; PRABHAKAR, PRAMOD; KUMAR, NITIN. Ultrasonic induced effect on mass transfer characteristics during osmotic dehydration of aonla (Phyllanthus emblica L.) slices: A mathematical modeling approach. Journal of Food Process Engineering, v. 44, n. 12, 2021, p. e13887. https://doi.org/10.1111/jfpe.13887

MESIAS, MARTA; DELGADO-ANDRADE, CRISTINA; GÓMEZ-NARVÁEZ, FAVER; CONTRERAS-CALDERÓN, JOSÉ; MORALES, FRANCISCO. Formation of acrylamide and other heat-induced compounds during panela production. Foods, v. 9, n. 4, 2020, p. 531.https://doi.org/10.3390%2Ffoods9040531

MUÑOZ, PATRICIO; PARRA, FELIPE; SIMIRGIOTIS, MARIO; SEPÚLVEDA-CHAVERA, GERMÁN; PARRA, CLAUDIO. Chemical characterization, nutritional and bioactive properties of Physalis peruviana fruit from high areas of the Atacama Desert. Foods, v. 10, n. 11, 2021, p. 2699.https://doi.org/10.3390/foods10112699

NAHIMANA, HILAIRE; ZHANG, MIN; MUJUMDAR, ARUN; DING, ZHANSHENG. Mass transfer modeling and shrinkage consideration during osmotic dehydration of fruits and vegetables. Food Reviews International, v. 27, n. 4, 2011, p. 331-356.https://doi.org/10.1080/87559129.2010.518298

PANDISELVAM, RAVI; TAK, YAMINI; OLUM, EMINE; SUJAYASREE, O. J.; TEKGÜL, YELIZ; ÇALIŞKAN-KOÇ, GÜLŞAH; KAUR, MANPREET; NAYI, PRATIK; KOTHAKOTA, ANJINEYULU; KUMAR, MANOJ. Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies, 2021, p. 1-26. https://doi.org/10.1111/jtxs.12643

PANTELIDOU, DIMITRA; GEROGIANNIS, KONSTANTINOS; GOULA, ATHANASIA; GONAS, CHRISTOS. Ultrasound-assisted osmotic dehydration as a method for supplementing potato with unused chokeberries phenolics. Food Bioprocess Technology, v. 14, 2021, p. 2231–2247.https://doi.org/10.1007/s11947-021-02720-0

PRITHANI, RASHMI; DASH, KSIROD-KUMAR. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science and Emerging Technologies, v. 64, 2020, p. 102407.https://doi.org/10.1016/j.ifset.2020.102407

RAHAMAN, ABDUL; ZENG, XIN-AN; KUMARI, ANKITA; RAFIQ, MUHAMMAD; SIDDEEG, AZHARI; MANZOOR, MUHAMMAD-FAISAL; BALOCH, ZULQARNAIN; AHMED, ZAHOOR. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics Sonochemistry, v. 58, 2019, p. 104643.https://doi.org/10.1016/j.ultsonch.2019.104643

RASTOGI, NAVIN-KUMAR; SHARMA, RICHA.; NIRANJAN, KESHAVAN; KNORR, DIETRICH. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science and Technology, v. 13, n. 2, 2002, p. 48–59.https://doi.org/10.1016/S0924-2244(02)00032-8

REZENDE, FERNANDA; GOMES, JEFFERSON-LUIZ. Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition, 2021, Online.https://doi.org/10.1080/10408398.2021.1983764

SEPÚLVEDA, ELENA; SAENZ, CARMEN. El Capulí: Un fruto exótico con posibilidades agroindustriales. Revista Alimentos, v. 19, n. 2, 1994, 59-63.

SHARMA, MAANAS; DASH, KSHIROD. Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics Sonochemistry, v. 58, 2019, p. 104693.https://doi.org/10.1016/j.ultsonch.2019.104693

SULISTYAWATI, ITA; VERKERK, RUUD; FOGLIANO, VINCENZO; DEKKER, MATTHIJS. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects. Journal of Food Engineering, v. 280, 2020, p. 109985.https://doi.org/10.1016/j.jfoodeng.2020.109985

UNITED STATES OF AMERICA. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (AOAC). Official Methods of Analysis, 15 th edition. Maryland (USA): 1995.

WU, XIAO-FEI; ZHANG, MIN; MUJUMDAR, ARUN; YANG, CHAO-HUI. Effect of ultrasound-assisted osmotic dehydration pretreatment on the infrared drying of Pakchoi Stems. Drying Technology, v. 38, n. 15, 2020, p. 2016-2026.https://doi.org/10.1080/07373937.2019.1608232

Cómo citar
Marceliano Sánchez, L., & Vegas Niño, R. M. (2022). Osmodeshidratación de Physalis peruviana L. utilizando panela con aplicación de ultrasonido y agitación. Biotecnología En El Sector Agropecuario Y Agroindustrial. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2205
Publicado
2022-11-16
Sección
Artículos de Investigaciòn