Efecto de la inoculación Rhizophagus irregularis y de la fertilización fosfatada sobre la comunidad local de hongos formadores de micorrizas arbusculares

  • Yuli Marcela Ordoñez Castañeda Universidad Nacional de Colombia
Palabras clave: Hongos Formadores de Micorrizas Arbusculares (HFMA), Rhizophagus irregularis, diversidad, Manihot esculenta, fertilización fosfatada, Inoculación, Comunidades de HFMA, Agricultura sostenible, Biofertilizantes, Esporas

Resumen

Los Hongos Formadores de Micorrizas Arbusculares (HFMA) son microorganismos cruciales en los suelos agrícolas por el efecto positivo que tienen sobre la movilización de uno de los nutrientes fundamentales para las plantas como es el fósforo (P). Los contenidos disponibles de P en los suelos de la Orinoquía Colombiana son bajos, por lo que la fertilización con fosfato es indispensable en cultivos comerciales como la yuca. El objetivo de este trabajo fue estudiar el efecto de la fertilización fosfatada y de la inoculación con Rhizophagus irregularis (hongo modelo de los HFMA), sobre las comunidades residentes de este grupo de hongos. La diversidad de los HFMA fue descrita a partir de las esporas presentes en la rizósfera de plantas de yuca mantenidas bajo condiciones agronómicas tradicionales. La riqueza y diversidad de las comunidades de HFMA se afectaron por la interacción de los factores analizados. En términos de estructura de la comunidad de HFMA en la rizósfera de las plantas de yuca, se detectaron cambios en la abundancia de los géneros Glomus y Acaulospora; asociados respectivamente a la inoculación y a la fertilización fosfatada. Los hallazgos de este estudio sugieren que prácticas agrícolas como la aplicación de fertilizante fosfatado y la inoculación con R. irregularis, son procesos que pueden afectar el ensamblaje de la comunidad de estos hongos, así también la diversidad de las comunidades de HFMA nativas en suelos de la Orinoquía Colombiana. Se requieren investigaciones adicionales para entender la relación entre la composición de las comunidades de HFMA y la respuesta de la planta hospedera.

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

Abbott, L. K., Robson, A. D., & Hall, I. R. (1983). Introduction of vesicular arbuscular mycorrhizal fungi into agricultural soils. Australian Journal Agricultural Research, 34, 741–749.
Alguacil, M. del M., Lozano, Z., Campoy, M. J., & Roldan, A. (2010). Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology and Biochemistry, 42(7), 1114–1122.
Aliyu, I. A., Yusuf, A. A., Uyovbisere, E. O., Masso, C., & Sanders, I. R. (2019). Effect of co-application of phosphorus fertilizer and in vitro-produced mycorrhizal fungal inoculants on yield and leaf nutrient concentration of cassava. PLOS ONE, 14(6), e0218969. https://doi.org/10.1371/journal.pone.0218969
Antunes, P. M., Koch, A. M., Dunfield, K. E., Hart, M. M., Downing, A., Rillig, M. C., & Klironomos, J. N. (2009). Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant and Soil, 317(1–2), 257–266.
Bhadalung, N. N., Suwanarit, A., Dell, B., Nopamornbodi, O., Thamchaipenet, A., & Rungchuang, J. (2005). Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant and Soil, 270(1), 371–382.
Cabrales-Herrera, E. M., Barrera-Violeth, J. L., & Novoa-Yanez, R. (2018). Identification of arbuscular mycorrhizal fungi in plantain producing municipalities in department of Cordoba, Colombia. Acta Agronómica, 67(1), 17–22.
Cakmak, I. (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247(1), 3–24. https://doi.org/10.1023/A:1021194511492
Camenzind, T., Hempel, S., Homeier, J., Horn, S., Velescu, A., Wilcke, W., & Rillig, M. C. (2014). Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 20(12), 3646–3659. https://doi.org/10.1111/gcb.12618
Ceballos, I., Mateus, I. D., Peña, R., Peña-Quemba, D. C., Robbins, C., Ordoñez, Y. M., Rosikiewicz, P., Rojas, E. C., Thuita, M., Mlay, D. P., Masso, C., Vanlauwe, B., Rodriguez, A., & Sanders, I. R. (2019). Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava. BioRxiv, 830547. https://doi.org/10.1101/830547
Ceballos, I., Ruiz, M., Fernandez, C., Peña, R., Rodriguez, A., & Sanders, I. R. (2013). The In Vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070633
de la Cruz-Ortiz, Á. V., Álvarez-Lopeztello, J., Robles, C., & Hernández-Cuevas, L. V. (2020). Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca), Mexico. Applied Soil Ecology, 149, 103519. https://doi.org/https://doi.org/10.1016/j.apsoil.2020.103519
Faye, A., Dalpé, Y., Ndung’u-Magiroi, K., Jefwa, J., Ndoye, I., Diouf, M., & Lesueur, D. (2013). Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian Journal of Plant Science, 93(6), 1201–1208. http://pubs.aic.ca/doi/abs/10.4141/cjps2013-326
Hart, M. M., Antunes, P. M., Chaudhary, V. B., & Abbott, L. K. (2017). Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology, 32(1), 126–135. https://doi.org/10.1111/1365-2435.12976
Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394(6692), 431. http://dx.doi.org/10.1038/28764
Hempel, S., Renker, C., & Buscot, F. (2007). Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environmental Microbiology, 9(8), 1930–1938. https://doi.org/10.1111/j.1462-2920.2007.01309.x
Hijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 26(3), 209–214. https://doi.org/10.1007/s00572-015-0661-4
INVAM. (2020). Extraction of Spores. Citado El 16 Noviembre de 2020. https://invam.wvu.edu/methods/spores/spore-extraction
Janoušková, M., Krak, K., Vosátka, M., Püschel, D., & Štorchová, H. (2017). Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PloS One, 12(7), e0181525–e0181525. https://doi.org/10.1371/journal.pone.0181525
Janoušková, M., Krak, K., Wagg, C., Štorchová, H., Caklová, P., & Vosátka, M. (2013). Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Applied and Environmental Microbiology, 79(20), 6507–6515.
Jin, H., Germida, J. J., & Walley, F. L. (2013). Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Applied Soil Ecology, 72, 22–30.
Kivlin, S. N., Hawkes, C. V., & Treseder, K. K. (2011). Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 43(11), 2294–2303. https://doi.org/10.1016/j.soilbio.2011.07.012
Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84(9), 2292–2301. https://doi.org/10.1890/02-0413
Koch, A. M., Antunes, P. M., Barto, E. K., Cipollini, D., Mummey, D. L., & Klironomos, J. N. (2011). The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biological Invasions, 13(7), 1627–1639.
Köhl, L., Lukasiewicz, E., C., Heijden, van der, & van der Heijden, M. G. (2016). Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell and Environment, 39, 136–146. https://doi.org/10.1111/pce.12600
Krüger, M., Krüger, C., Walker, C., Stockinger, H., & Schussler, A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist, 193(4), 970–984. https://doi.org/10.1111/j.1469-8137.2011.03962.x
Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65(2), 339–349.
Lin, C., Wang, Y., Liu, M., Li, Q., Xiao, W., & Song, X. (2020). Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Scientific Reports, 10(1), 12260. https://doi.org/10.1038/s41598-020-69213-6
Loján, P., Senés-Guerrero, C., Suárez, J. P., Kromann, P., Schüßler, A., & Declerck, S. (2017). Potato field-inoculation in Ecuador with Rhizophagus irregularis: no impact on growth performance and associated arbuscular mycorrhizal fungal communities. Symbiosis, 73(1), 45–56. https://doi.org/10.1007/s13199-016-0471-2
López-García, Á., Jurado-Rivera, J. A., Bota, J., Cifre, J., & Baraza, E. (2020). Space and Vine Cultivar Interact to Determine the Arbuscular Mycorrhizal Fungal Community Composition. Journal of Fungi (Basel, Switzerland), 6(4). https://doi.org/10.3390/jof6040317
Maherali, H., & Klironomos, J. N. (2012). Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE, 7(5).
Martignoni, M. M., Garnier, J., Hart, M. M., & Tyson, R. C. (2020). Investigating the impact of the mycorrhizal inoculum on the resident fungal community and on plant growth. Ecological Modelling, 438, 109321. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109321
Millar, N. S., & Bennett, A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182(3), 625–641. https://doi.org/10.1007/s00442-016-3673-7
Morton, J. B., Bentivenga, S. P., & Wheeler, W. W. (1993). Germ Plasm in the International Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (Invam) and Procedures for Culture Development, Documentation and Storage. Mycotaxon, 48, 491–528.
Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M., & Sieverding, E. (2010). Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42(5), 724–738. https://doi.org/10.1016/j.soilbio.2010.01.006
Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & Alves da Silva, G. (2011). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2(2), 191–199. https://doi.org/10.5598/imafungus.2011.02.02.10
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2015). vegan: Community Ecology Package. In R package version 2.3-1. https://doi.org/10.4135/9781412971874.n145
Olsson, P. A., Rahm, J., & Aliasgharzad, N. (2010). Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiology Ecology, 72(1), 125–131.
Öpik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J. M., Reier, A., & Zobel, M. (2010). The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 188(1), 223–241.
Öpik, M., Zobel, M., Cantero, J. J., Davison, J., Facelli, J. M., Hiiesalu, I., Jairus, T., Kalwij, J. M., Koorem, K., Leal, M. E., Liira, J., Metsis, M., Neshataeva, V., Paal, J., Phosri, C., Põlme, S., Reier, Ü., Saks, Ü., Schimann, H., … Moora, M. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 23(5), 411–430. https://doi.org/10.1007/s00572-013-0482-2
Orchard, S., Hilton, S., Bending, G. D., Dickie, I. A., Standish, R. J., Gleeson, D. B., Jeffery, R. P., Powell, J. R., Walker, C., Bass, D., Monk, J., Simonin, A., & Ryan, M. H. (2017). Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytologist, 213(2), 481–486. https://doi.org/10.1111/nph.14268
Ordoñez, Y. M., Villard, L., Ceballos, I., Masclaux, F. G., Rodriguez, A., & Sanders, I. R. (2020). Inoculation with highly-related mycorrhizal fungal siblings, and their interaction with plant genoptypes, strongly shapes tropical mycorrhizal fungal community structure. BioRxiv, 2020.07.31.230490. https://doi.org/10.1101/2020.07.31.230490
Pellegrino, E., Turrini, A., Gamper, H. A., Cafa, G., Bonari, E., Young, J. P. W., & Giovannetti, M. (2012). Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytologist, 194(3), 810–822.
R Core Team. (2016). R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria., ISBN 3-900051-07-0, URL http://www.R-project.org/. http://www.mendeley.com/research/r-language-environment-statistical-computing-96/%5Cnpapers2://publication/uuid/A1207DAB-22D3-4A04-82FB-D4DD5AD57C28
Renaut, S., Daoud, R., Masse, J., Vialle, A., & Hijri, M. (2020). Inoculation with Rhizophagus Irregularis Does Not Alter Arbuscular Mycorrhizal Fungal Community Structure within the Roots of Corn, Wheat, and Soybean Crops. Microorganisms, 8(1), 83. https://doi.org/10.3390/microorganisms8010083
Renker, C., Zobel, M., Öpik, M., Allen, M., Allen, E., Vosátka, M., Rydlová, J., & Buscot, F. (2004). Structure, dynamics, and restoration of plant communities: do arbuscular mycorrhizae matter? In Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology—bridging the gap between theory and practice. Island, Washington DC, (p. pp 189–229).
Restrepo-Giraldo, K. J., Montoya Correa, M. I., Henao Jaramillo, P., Gutiérrez, L. A., & Molina Guzmán, L. P. (2019). Caracterización de hongos micorrízicos arbusculares de suelos ganaderos del trópico alto y trópico bajo en Antioquia, Colombia. Idesia (Arica), 37(1), 35–44. https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-34292019000100035#B22
Rodriguez, A., & Sanders, I. . (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME Journal, 9(5), 1053–1061.
Sanders, I. R., Alt, M., Groppe, K., Boller, T., & Wiemken, A. (1995). Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: applcation to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. The New Phytologist, 130, 419–427.
Savary, R., Masclaux, F. G., Wyss, T., Droh, G., Cruz Corella, J., Machado, A. P., Morton, J. B., & Sanders, I. R. (2018). A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. The ISME Journal, 12(1), 17–30. https://doi.org/10.1038/ismej.2017.153
Schenck, N. C., & Perez, Y. (1990). Isolation and culture of VA mycorrhizal fungi. Isolation of Biotechnological Organisms from Nature, 237–258.
Schussler, A. (2020). Glomeromycota SPECIES LIST. Glomeromycota: Phylogeny and Taxonomy of Glomeromycota (Arbuscular Mycorrhizal (AM) and Related Fungi). http://www.amf-phylogeny.com/
Senés-Guerrero, C., Torres-Cortés, G., Pfeiffer, S., Rojas, M., & Schüßler, A. (2014). Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza, 24(6), 405–417. https://doi.org/10.1007/s00572-013-0549-0
Séry, D. J. M., van Tuinen, D., Drain, A., Mounier, A., & Zézé, A. (2018). The genus Rhizophagus dominates arbuscular mycorrhizal fungi communities in contrasted cassava field soils in Côte d’Ivoire. Rhizosphere, 7, 8–17. https://doi.org/10.1016/j.rhisph.2018.06.007
Smith, S., & Read, D. (2008). The Mycorrhizal Symbiosis. San Diego: Academic Press, Elseiver e, 10–90.
Sýkorová, Z., Börstler, B., Zvolenská, S., Fehrer, J., Gryndler, M., Vosátka, M., & Redecker, D. (2012). Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza, 22(1), 69–80. https://doi.org/10.1007/s00572-011-0375-1
Symanczik, S., Courty, P. E., Boller, T., Wiemken, A., & Al-Yahya’ei, M. N. (2015). Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 25, 639–647. https://doi.org/10.1007/s00572-015-0638-3
Thioye, B., van Tuinen, D., Kane, A., de Faria, S. M., Ndiaye, C., Duponnois, R., Sylla, S. N., & Bâ, A. M. (2019). Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions. Mycorrhiza, 29(1), 77–83. https://doi.org/10.1007/s00572-018-0875-3
Varela-Cervero, S., Vasar, M., Davison, J., Barea, J. M., Öpik, M., & Azcón-Aguilar, C. (2015). The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environmental Microbiology, 17(8), 2882–2895.
Victorino, Í. M. M., Voyron, S., Caser, M., Orgiazzi, A., Demasi, S., Berruti, A., Scariot, V., Bianciotto, V., & Lumini, E. (2021). Metabarcoding of Soil Fungal Communities Associated with Alpine Field-Grown Saffron (Crocus sativus L.) Inoculated with AM Fungi. Journal of Fungi (Basel, Switzerland), 7(1). https://doi.org/10.3390/jof7010045
Vieira, L. C., da Silva, D. K. A., Escobar, I. E. C., da Silva, J. M., de Moura, I. A., Oehl, F., & da Silva, G. A. (2020). Changes in an arbuscular mycorrhizal fungi community along an environmental gradient. Plants, 9(1), 1–16. https://doi.org/10.3390/plants9010052
Vosátka, M., Látr, A., Gianinazzi, S., & Albrechtová, J. (2012). Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis, 58(1), 29–37. https://doi.org/10.1007/s13199-012-0208-9
Wakelin, S., Mander, C., Gerard, E., Jansa, J., Erb, A., Young, S., Condron, L., & O’Callaghan, M. (2012). Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 61, 40–48. https://doi.org/10.1016/j.apsoil.2012.06.002
Cómo citar
Ordoñez Castañeda, Y. M. (2021). Efecto de la inoculación Rhizophagus irregularis y de la fertilización fosfatada sobre la comunidad local de hongos formadores de micorrizas arbusculares. Biotecnología En El Sector Agropecuario Y Agroindustrial, 1-13. https://doi.org/10.18684/bsaa.v.n.1850
Publicado
2021-04-24
Sección
Artículos de Investigaciòn