Lipase of Pachira speciosa seeds immobilized in chitosan beads: a recyclable bio-catalytic system

  • Dary Mendoza Meza Universidad del Atlántico
  • Ivon Esher Valenzuela Jaramillo Universidad del Atlántico
Palabras clave: Lipasa vegetal, Inmovilización, Actividad Lipolitica, Biocatalizador, Quitosano, Pachira speciosa, Bioconversion, Actividad residual, Esferas magnéticas, Alginato

Resumen

Las lipasas vegetales son biocatalizadores altamente versátiles debido a su quimioselectividad, enantioselectividad y regioselectividad. El propósito fue obtener un sistema biocatalítico reciclable a partir de lipasas de semillas de Pachira speciosa, aplicable a la biotransformación de lípidos. Se obtuvo una lipasa parcialmente purificada de extractos de semillas de P. speciosa, mediante cromatografía de filtración en gel en Sephadex G-100; la actividad específica lipasa (ALe) se determinó por el método de titulación de ácidos grasos libres. Se aplicó un diseño de superficie de repuesta Box-Behnken para establecer las condiciones que maximizan la inmovilización de la lipasa a tres soportes: esferas de quitosano (Q), esferas de alginato de calcio cubiertas con quitosano (Alg-Q) y esferas magnéticas de quitosano-Fe(OH)3 (Q-Fe). La mayor ALe de la enzima libre fue 0,49±0,01U/mg, a 40 °C y pH 9. El porcentaje de inmovilización y la ALe de cada biocatalízador fue: Q = 90,6 % y 3,74±0,3 nKat/mg; Alg-Q = 88,5 % y 3,62±0,1 nKat/mg; EQ-Fe = 76,4 % y 2,88±0,1 nKat/mg. El sistema biocatalítico más estable fue la lipasa inmovilizada en quitosano, con 85 % de rentención de la ALe hasta el tercer ciclo catalítico. Estudios futuros estarán enfocados a establecer los parámetros cinéticos del nuevo biocatalizador.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Bioquimica, Biotecnología

Lenguajes:

Español

Referencias bibliográficas

AKSHITA, MEHTA; SUMAN, GULERIA; ROJI, SHARMA; REENA, GUPTAET. Chapter 6 - The lipases and their applications with emphasis on food industry. En RAMESH C. Ray; Applied Biotechnology Reviews, Microbial Biotechnology in Food and Health. Bhubaneswar (India): Academic Press, 2020, 308 p.

ALBAYATI, SAMAH-HASHIM; MASOMIAN, MALIHE; ISHAK, SITI-NOR-HASMAH; MOHAMAD-ALI, MOHD-SHUKURI-BIN; THEAN, ADAM LEOW; MOHD-SHARIFF, FAIROLNIZA-BINTI; MUHD-NOOR, NOOR-DINA-BINTI; RAJA-ABD-RAHMAN, RAJA-NOOR-ZALIHA. Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts, v. 10, n. 7, 2020. p. 747. http://doi.org/10.3390/catal10070747

ALNOCH, ROBSON-CARLOS; ALVES-DOS SANTOS, LEANDRO; MARQUES-DE ALMEIDA, JANAINA; KRIEGER, NADIA; MATEO, CESAR. Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts, v. 10, 2020, p. 697. https://doi.org/10.3390/catal10060697

BAI, YUAN; WU, WEI. The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-chitosan Gel Beads. Applied Biochemistry and Biotechnology (Preprint), 2021.https://doi.org/10.21203/rs.3.rs-680678/v1

BERNAL, RODRIGO; GRADSTEIN, ROBERT; CELIS, MARTA. Catálogo de plantas y líquenes de Colombia. Bogotá (Colombia): Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 2015.

BHARATHI, DEVARAJ; RAJALAKSHMI, G.; KOMATHI, S. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University – Science, v. 31, n. 4, 2019, p. 898-901.https://doi.org/10.1016/j.jksus.2017.12.018

BIRÓ, EMESE; S.Z. NÉMETH, ÁGNES; SISAK, CSABA; FECZKÓ, TIVADAR; GYENIS; JÁNOS Preparation of chitosan particles suitable for enzyme immobilization. Journal of Biochemical and Biophysical Methods, v. 70, n. 6, 2018, p. 1240-1246. http://doi.org/10.1016/j.jprot.2007.11.005

BONINE, BARBARA; PERES-POLIZELLI, PATRICIA; BONILLA-RODRIGUEZ, GUSTAVO. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads, Enzyme Research, 2014, p. 1315-1322.https://doi.org/10.1155/2014/738739

KIELKOPF, CLARA; BAUER, WILLIAM; URBATSCH, INA. Bradford Assay for Determining Protein Concentration, Cold Spring Harbor Protocols, v. 4, 2020, p. 136-138.https://doi.org/10.1101/pdb.prot102269

CHANDRA, PREM; ENESPA, RANJAN-SINGH; ARORA, PANKAI-KUMAR. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, v. 19, 2020. p. 1-42.https://doi.org/10.1186/s12934-020-01428-8

CONG, SHANZI; TIAN, KANGMING; ZHANG, XIN; LU, FUPING; SINGH, SUREN; PRIOR, BERNARD; WANG, ZHENG-XIANG. Synthesis of flavor esters by a novel lipase from Aspergillus niger in a soybean-solvent system. 3 Biotech, v. 9, n. 6, 2019, p. 244. https://doi.org/10.1007/s13205-019-1778-5

EHLERT, JANNA; KRONEMANN, JENNY; ZUMBRÄGEL, NADINE; PRELLER, MATTHIAS. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Molecules (Basel, Switzerland), v. 24, n. 23, 2019, p. 1-16.https://doi.org/10.3390/molecules24234272

FATIMA, SAMAR; FARYAD, AMNA; ATAA, ASIA; JOYIA, AHMAD-FAIZ; PARVAIZ, AQSA. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 2020, p. 1-14. https://doi.org/10.1002/bab.2019

GUEVARA-ANDINO, JUAN-ERNESTO; FERNANDEZ-ALONSO, JOSÉ-LUIS. A Remarkable New Species of Pachira (Malvaceae: Bombacoideae) from an Amazonian Hotspot of Endemism. Systematic Botany, v. 43, n. 4, 2018, p. 993-999.https://doi.org/10.1600/036364418X697724

HELAL, SHIMAA; ABDELHADY, HEMMAT M.; ABOU-TALEB, KHADIGA A.; HASSAN, MERVAT G.; AMER, MAHMOUD M. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering and Biotechnology, v. 19, n. 1, 2021.https://doi.org/10.1186/s43141-020-00094-y

HU, JUN; CAI, WENHAO; WANG, CHANGGAO; DU, XIN; LIN, JIANGUO; CAI, JUN. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnology & Biotechnological Equipment, v. 32, n. 3, 2018, p. 583-590.https://doi.org/10.1080/13102818.2018.1446764

JARES-CONTESINI, FABIANO; GOMES-DAVANÇO, MARCELO; PAGOTTO-BORIN, GUSTAVO; GARCIA-VANEGAS, KATHERINA; GONÇALVES-CIRINO, JOÃO-PEDRO; RODRIGUES-DE MELO, RICARDO; MORTENSEN, UFFE-HASBRO; HILDÉN, KRISTIINA; ROSSI-CAMPOS, DANIEL; DE OLIVEIRA-CARVALHO, PATRICIA. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts, v. 10, 2020, p. 1032.https://doi.org/10.3390/catal10091032

KAWIŃSKI, ADAM; MIKLASZEWSKA, MAGDALENA; STELTER, SZYMON; GŁĄB, BARTOSZ; BANAŚ, ANTONI. Lipases of germinating jojoba seeds efficiently hydrolyze triacylglycerols and wax esters and display wax ester-synthesizing activity. BMC Plant Biology, v. 21, n. 50, 2021, p. 1-13 https://doi.org/10.1186/s12870-020-02823-4

KHOO, KUAN-SHIONG; LEONG, HUI-YI; CHEW, KIT-WAYNE: LIM, JUN-WEI; LING, TAU-CHUAN; SHOW, PAU-LOKE; YEN, HONG-WEI. Liquid Biphasic System: A Recent Bioseparation Technology. Processes, v. 8, n. 2, 2020, p. 149.

http://doi.org/10.3390/pr8020149

KUMAR, ANIL; MUKHIA, SRIJANA; KUMAR, NEEJAR; ACHARYA, VISHAL; KUMAR, SANJAY; KUMAR, RAKSHAK. A Broad Temperature Active Lipase Purified from a Psychrotrophic Bacterium of Sikkim Himalaya with Potential Application in Detergent Formulation. Frontiers in Bioengineering and Biotechnology, v. 8, 2020, p. 1-16.http://doi.org/10.3389/fbioe.2020.00642

LV, LIANGLIANG; DAI, LINGMEI; DU, WEI; LIU, DEHUA. Progress in Enzymatic Biodiesel Production and Commercialization. Processes, v. 9, 2021, p. 355.https://doi.org/10.3390/pr9020355

MUKHERJEE, K.D. Plant lipases and their application in lipid biotransformations. Progress in Lipid Research, v. 33, n. 1-2, 1994, p.165-174. https://doi.org/10.1016/0163-7827(94)90019-1

NHAT, DANG-MINH; HA, PHAN-THI-VIET. The isolation and characterization of lipase from Carica papaya latex using zwitterion sodium lauroyl sarcosinate as agent. Potravinarstvo Slovak Journal of Food Sciences, v. 13, 2019, p. 773 -778. https://doi.org/10.5219/1164

NURALIYAH, ANDI; PERDANI, MEKA SAIMA, PUTRI, DWINI; SHLAN, MUHAMAD; WIJANARKO, ANONDHO; HERMANSYAH, HERI. Effect of Additional Amino Group to Improve the Performance of Immobilized Lipase From Aspergillus niger by Adsorption-Crosslinking Method. Front. Energy Res. v. 9, 2021 p. 616945.https://doi.org/10.3389/fenrg.2021.616945

PAL, AJAY; KHANUM, FARHATH. Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: Characterization of immobilized enzyme. Process Biochemistry, v. 46, n. 6, 2011, p. 1315-1322.https://doi.org/10.1016/j.procbio.2011.02.024

PATEL, NAVEEN; RAI, DHANANJAI; SHIVAM; SHAHANE SHRADDHA; MISHRA, UMESH. Lipases: Sources, Production, Purification, and Applications. Recent Patents on Biotechnology, v. 13, n. 1, 2019, p. 45-56.

https://doi.org/10.2174/1872208312666181029093333

PEREIRA-CIPOLATTI, ELIANE; COSTA-CERQUEIRA-PINTO, MARTINA; OLIVEIRA-HENRIQUES, AROSANA; COSTA DA SILVA-PINTO, JOSÉ-CARLOS; MACHADO-DE CASTRO, ALINE; GUIMARÃES-FREIRE, DENISE-MARIA; ANDRADE-MANOEL, EVELIN. Enzymes in Green Chemistry: The State of the Art in Chemical Transformations. En SINGH, RAM-SARUP; SINGHANIA, REETA-RANI; PANDEY, ASHOK; LARROCHE, CHRISTIAN. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Amsterdam (Netherlands): Elsevier, 2019, 524 p.https://doi.org/10.1016/b978-0-444-64114-4.00005-4

PERES-POLIZELLI, PATRICIA; DELL ANTONIO-FACCHINI, FERNANDA; CABRAL, HAMILTON; BONILLA-RODRIGUEZ, GUSTAVO-ORLANDO. A new lipase isolated from oleaginous seeds from Pachira aquatica (Bombacaceae). Applied Biochemistry and Biotechnology, v. 150, n. 3, 2008, p. 233-242. https://doi.org/10.1007/s12010-008-8145-z

POSPISKOVA, KRISTYNA; SAFARIK, IVO. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohydrate Polymers, v. 96, n. 2, 2013, p. 545-548. http://doi.org/10.1016/j.carbpol.2013.04.014

SANTOS-DUARTE, DIRLIANE; DE ALMEIDA-NASCIMENTO, JOSÉ-AUGUSTO; DE-BRITTO, DOUGLAS. Scale-up in the synthesis of nanoparticles for encapsulation of agroindustrial active principles. Ciência e Agrotecnologia, v. 43, 2019, p. e023819.https://dx.doi.org/10.1590/1413-7054201943023819

SETH, SONALI; CHAKRAVORTY, DEBAMITRA; KUMAR-DUBEY, VIKASH; PATRA, SANJUKTA. An insight into plant lipase research - challenges encountered. Protein Expression and Purification, v. 85, 2014, p. 13-21.

https://doi.org/10.1016/j.pep.2013.11.006.

SPELMEZAN, CRISTINA-GEORGIANA; BENCZE, LÁSZLÓ-CSABA; KATONA, GABRIEL; IRIMIE, FLORIN-DAN; PAIZS, CSABA; TOȘA, MONICA-IOANA. Efficient and Stable Magnetic Chitosan-Lipase B from Candida Antarctica Bioconjugates in the Enzymatic Kinetic Resolution of Racemic Heteroarylethanols. Molecules, v. 25, 2020, p. 2-15.

https://doi.org/10.3390/molecules25020350

SWAGATA, PAHARI; LEXUAN, SUN; EMIL, ALEXOV. PKAD: a database of experimentally measured pKa values of ionizable groups in proteins. Database, v. 2019, 2019, p. 1-7.https://doi.org/10.1093/database/baz024

URQUIJO-RODRIGUEZ, MILENA., FONTALVO-GÓMEZ, MIRIAM; VELOSO-DE PAULA, ARIELA; MENDOZA-MEZA, DARY. Hidrólisis enzimática del aceite de Bactris guineensis con fracciones del látex de Carica papaya: estudio del efecto de la temperatura, pH y concentración del sustrato. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 18, 2020, p. 70-81https://doi.org/10.18684/bsaa(18)70-81

XIE, KONGLIANG; YU, YANHONG; SHI, YAQI. Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydrate Polymers, v. 78, n. 4, 2009, p. 799-805.https://doi.org/10.1016/j.carbpol.2009.06.019

XU, JIAKUN; SUN, JINGJING; WANG, YUEJUN: SHENG, JUN; WANG, FANG; SUN, MIU. Application of iron magnetic nanoparticles in protein immobilization. Molecules, v. 19, n. 8, 2014, p. 11465–11486.https://doi.org/10.3390/molecules190811465

YAGAR, HULIA; BALKAN, UGUR, Entrapment of laurel lipase in chitosan hydrogel beads. Artificial Cells, Nanomedicine, and Biotechnology, v. 45, n. 5, 2017, p. 867-870. https://doi.org/10.1080/21691401.2016.1182920

ZIENKIEWICZ, AGNIESZKA; REJÓN, JUAN-DAVID; ZIENKIEWICZ, KRZYSZTOF; CASTRO, ANTONIO-JESÚS; RODRÍGUEZ-GARCÍA, MARIA-ISABEL. In Gel Detection of Lipase Activity in Crude Plant Extracts (Olea europaea). Bio-protocol, v. 5, n. 8, 2015, p. e1444. https://doi.org/10.21769/BioProtoc.1444

Cómo citar
Mendoza Meza, D., & Valenzuela Jaramillo, I. E. (2021). Lipase of Pachira speciosa seeds immobilized in chitosan beads: a recyclable bio-catalytic system. Biotecnología En El Sector Agropecuario Y Agroindustrial, 20(1), 179–193. https://doi.org/10.18684/rbsaa.v20.n1.2022.1890
Publicado
2021-10-21
Sección
Artículos de Investigaciòn
QR Code