Producción de un material biocompuesto a base de micelio por medio de fermentación sólida usando Pleurotus ostreatus

  • Adriana Suesca Síaz Fundación Universidad de América
  • Andrea Carolina Medina Gutiérrez Fundación Universidad de América
  • Paula Jimena Medina Rodríguez Fundación Universidad de América
  • Diana Milena Morales Fonseca Fundación Universidad de América
Palabras clave: Pleurotus ostreatus, Fermentación sólida, Caracterización, Biomaterial, Poliestireno expandido, Esfuerzo de compresión, Afrecho de malta, Salvado de trigo, Diseño conceptual, Empaque

Resumen

El poliestireno expandido (EPS) es un material generalmente utilizado como embalaje y la cantidad de desechos de EPS acumulados en los vertederos ha impulsado el avance en la producción de materiales biocompuestos como los producidos a partir de micelios fúngicos. Este estudio tuvo como objetivo principal la producción de un material biocompuesto obtenido a partir del micelio de la cepa Pleurotus ostreatus usando afrecho de malta y salvado de trigo como sustrato con miras a ser usado como material para empaques y embalajes. Se realizaron tres mezclas diferentes, mezcla A (50 % afrecho y 50 % salvado); mezcla B (30 % afrecho y 70 % salvado) y mezcla C (0 % afrecho y 100 % salvado) para la realización de fermentaciones sólidas. Para la caracterización se midió el contenido de humedad, resistencia a la compresión, densidad, absorción de agua, conductividad eléctrica y pH. La mezcla que obtuvo mejor colonización y propiedades fue la mezcla A con valores de esfuerzo de compresión promedio de 110,04 kPa para un 10 % de deformación, absorción de agua máxima de 172,01 % (36 horas), pH de 5,88, conductividad eléctrica de 1860 µS/cm y una densidad de 233,17 kg/m3. Al comparar las propiedades con el EPS se encuentra que el esfuerzo a la compresión es similar, sin embargo, propiedades como la densidad y la absorción del agua presenta valores muy altos para que el biocompuesto pueda usarse en embalaje.

 

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Biotecnología, fermentación, Aprovechamiento de Biomasa, Biomasa lignocelulosica

Lenguajes:

Español

Referencias bibliográficas

AIDUANG, WORAWOOT; KUMLA, JATURONG; SRINUANPAN, SIRASIT; THAMJAREE, WANDEE; LUMYONG, SAISAMORN; SUWANNARACH, NAKARIN. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. Journal of Fungi, v. 8, n. 11, 2022, 1125. https://doi.org/10.3390/jof8111125

ALEMU, DIGAFE; TAFESSE, MESFIN; KANTI, AJOY; Mondal Mycelium-Based Composite: The Future Sustainable Biomaterial. International Journal of Biomaterials, 2022, 8401528. https://doi.org/10.1155/2022/8401528

ARAYA-FARIAS, MONICA; HUSSON, ERIC; SAAVEDRA-TORRICO, JORGE; GÉRARD, DORIANE; ROULARD, ROMAIN; GOSSELIN, ISABELLE; RAKOTOARIVONINA, HARIVONI; LAMBERTYN, VIRGINIE; RÉMOND, CAROLINE; SARAZIN, CATHERINE. Wheat Bran Pretreatment by Room Temperature Ionic Liquid-Water Mixture: Optimization of Process Conditions by PLS-Surface Response Design. Frontiers in Chemistry, v. 7, 2019. https://doi.org/10.3389/fchem.2019.00585

ASTM INTERNATIONAL. American Society for Testing and Materials D695-15: Standard Test Method for Compressive Properties of Rigid Plastics. Pennsylvania (USA): 2015, 8 p.

ASTM INTERNATIONAL. American Society for Testing and Materials C272/C272M: Standard Test Method for Water Absorption of Core Materials for Sandwich Constructions. Pennsylvania (USA): 2018, 4 p.

BELLETTINI, MARCELO-BARBA; FIORDA, FERNANDA-ASSUMPÇÃO; MAIEVES, HELAYNE-APARECIDA; TEIXEIRA, GERSON-LOPES; ÁVILA, SUELEN; HORNUNG, POLYANNA-SILVEIRA; JÚNIOR, AGENOR-MACCARI; RIBANI, ROSEMARY-HOFFMANN. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, v. 26, n. 4, 2019, p. 633-646.https://doi.org/https://doi.org/10.1016/j.sjbs.2016.12.005

BUTU, ALINA; RODINO, STELIANA; MIU, BOGDAN ANDREI; BUTU, MARIAN. Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures, v. 15, n. 4, 2020, p. 1129-1140. https://chalcogen.ro/1129_ButuM.pdf

CHARRONDIERE, RUTH; HAYTOWITZ, DAVID; STADLMAYR, BARBARA. FAO/INFOODS Density Database Version 2.0. Food and agriculture organization of the United Nations technical workshop report. 2012, 24 p. https://www.fao.org/3/ap815e/ap815e.pdf

COLMENARES, ELICEL; BAUTISTA, LUIS; OLIVEROS, CLEOMARY. Material ecológico con fines de embalaje a partir del hongo Pleurotus ostreatus y residuos orgánicos agroindustriales. Revista Científica Unet, v. 30, n. 1, 2018, p 324–332.https://www.researchgate.net/publication/328412004_Material_ecologico_con_fines_de_embalaje_a_partir_del_hongo_Pleurotus_ostreatus_y_residuos_organicos_agroindustriales

DOROŠKI, ANA; KLAUS, ANITA; REŽEK, ANET; DJEKIC, ILIJA. Food Waste Originated Material as an Alternative Substrate Used for the Cultivation of Oyster Mushroom (Pleurotus ostreatus): A Review. Sustainability, v. 14, n. 19, 2022, 12509.https://www.mdpi.com/2071-1050/14/19/12509

GARCIA, NATALIA. Evaluación del impacto ambiental de la aplicación de un plan de gestión posconsumo de poliestirenoexpandido (EPS) utilizado en el envase de alimentos en Colombia [Tesis de Maestría en Ingeniería de Procesos]. Bogotá (Colombia): Universidad EAN, 2019, 121 p.

GHAZVINIAN, ALI; FARROKHSIAR, PANIZ; VIEIRA, FABRICIO; PECCHIA, JHON; GURSOY, BENAY. Mycelium-Based Bio-Composites For Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. Matter - Material Studies And Innovation, v. 2, 2019, p. 505-514. https://doi.org/10.5151/proceedings-ecaadesigradi2019_465

GREGORI, ANDREJ; ŠVAGELJ, MIRJAN; PAHOR, BOJAN; BEROVIČ, MARIN; POHLEVEN, FRANC. The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. New Biotechnology, v. 25, n. 2-3, 2008, p. 157-161.https://doi.org/https://doi.org/10.1016/j.nbt.2008.08.003

HORTON, ALICE. Plastic pollution: When do we know enough? Journal of Hazardous Materials, v. 422, 2022, 126885.

https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126885

HOUETTE, THIBAUT; MAURER, CHRISTOPHER; NIEWIAROWSKI, REMIK; GRUBER, PETRA. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics, v. 7, n. 3, 2022, p. 103. https://doi.org/10.3390/biomimetics7030103

SWITZERLAND. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: 9427 Wood-based panels — Determination of density. Geneva (Switzerland): 2003, 3p.

JONES, MITCHELL; MAUTNER, ANDREAS; LUENCO, STEFANO; BISMARCK, ALEXANDER; JOHN, SABU. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, v. 187, 2020, 108397.https://doi.org/https://doi.org/10.1016/j.matdes.2019.108397

JOSHI, KSHITJI; MEHER, MUKESH-KUMAR; POLURI, KRISHNA-MOHAN. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Applied Bio Materials, v. 3, n. 4, 2020, p. 1884-1892.https://doi.org/10.1021/acsabm.9b01047

MÄKELÄ, MIIA; GALKIN, SARI; HATAKKA, ANNELE; LUNDELL, TAINA. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology, v. 30, n. 4, 2002, p. 542-549. https://doi.org/10.1016/S0141-0229(02)00012-1

MARTÍNEZ-LÓPEZ, CRYSTELL; LAINES-CANEPA, JOSÉ. Poliestireno Expandido (EPS) y su problemática ambiental. KUXULKAB`, v. 19, n. 3, 2013, p. 63-65.https://revistas.ujat.mx/index.php/kuxulkab/article/download/339/262

MELO-PARRA, CLAUDIA-GIOVANNA. Evaluación de la colonización del hongo Pleurotus ostreatus en sustratos lignocelulósicos [Tesis ingeniería química]. Bogotá (Colombia): Fundación Universidad de América, Facultad de Ingeniería, 2021, 116p.

NASHIRUDDIN, NOOR-IDAYU; CHUA, KAI SHIN; MANSOR, AZMI-FADZIYANA; RAHMAN, ROSHANIDA; LAI, JAU-CHOY; WAN-AZELEE, NUR-IZYAN; EL-ENSHASY, HESHAM. Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy, v. 24, n. 1, 2022, p. 351-361. https://doi.org/10.1007/s10098-021-02146-4

MOLYGRAN. EPS Technical Data from Molygran. 2021. https://www.molygran.com/our-advice/eps-technical-data/ [consultado mayo 1 de 2023].

NILSEN-NYGAARD, JULIE; FERNÁNDEZ, ESTEFANÍA.; RADUSIN, TANJA; ROTABAKK, BJØRN-TORE; SARFRAZ, JAWAD; SHARMIN, NUSRAT; SIVERTSVIK, MORTEN; SONE, IZUMI; PETTERSEN, MARIT-KVALVÅG. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, v. 20, n. 2, 2021, p. 1333-1380. https://doi.org/https://doi.org/10.1111/1541-4337.12715

OBSERVATORY OF ECONOMIC COMPLEXITY (OEC). Wheat. 2022. https://oec.world/en/profile/hs/wheat [Consultado febrero 22 de 2024].

PALMER, KEVIN J.;, LAUDER, KERRI; CHRISTOPHER, KYESHAUN; GUERRA, FATIMA; WELCH, REBECCA; BERTUCCIO, ALEX J. Biodegradation of expanded polystyrene by larval and adult stages of Tenebrio molitor with varying substrates and beddings. Environmental Processes, v. 9, n. 1, 2022, p. 3. https://doi.org/10.1007/s40710-021-00556-6

PÉREZ, V.; MURILLO, J.M.; BADOS, R.; ESTEBAN, L.S.; RAMOS, R.; SÁNCHEZ, J.M. Preparation and gasification of brewers’ spent grains. Athens (Greece): Proceedings of the 5th International Conference on Sustainable Solid Waste Management, 2017, p. 1-12.

PRÜCKLER, MICHAEL; SIEBENHANDL-EHN, SUSANNE; APPRICH, SILVIA; HÖLTINGER, STEFAN; HAAS, CORNELIA; SCHMID, ERWIN; KNEIFEL, WOLFGANG. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, v. 56, n. 2, 2014, p. 211-221.https://doi.org/10.1016/j.lwt.2013.12.004

RAMLI-SULONG, NOR-HAFIZAH; MUSTAPA, SITI-AISYAH-SYAERAH; ABDUL-RASHID, MUHAMMAD-KHAIRI. Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, v. 136, n. 20, 2019, 47529.https://doi.org/https://doi.org/10.1002/app.47529

SISTI, LAURA; GIOIA, CLAUDIO; TOTARO, GRAZIA; VERSTICHEL, STEVEN; CARTABIA, MARCO; CAMERE, SERENA; CELLI, ANNAMARIA. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products, v. 170, 2021, 113742.https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113742

SIVAPRASAD, S.; BYJU, SIDHARTH. K.; PRAJITH, C.; SHAJU, JITHIN; REJEESH, C.R. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Materials Today: Proceedings, v. 47, 2021, p. 5038–5044.https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.622

STYLITE. Stylite Expanded Polystyrene - Datasheet. 2018. [Consultado mayo 11 de 2023].

TEIXEIRA, JUAN-LOPEZ; MATOS, MAXWELL-PACA; NASCIMENTO, BRENNO-LIMA; GRIZA, SANDRO; HOLANDA, FRANCISCO-SANDRO-RODRIGUES; MARINO, REGINA-HELENA. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, v. 42, n. 6, 2018, p. 676–684.https://doi.org/10.1590/1413-70542018426022318

VÁSQUEZ, LAURA S.; SOPO, VALENTINA; SUESCA-DÍAZ, ADRIANA; MORALES-FONSECA, DIANA. Elaboration of a Biomaterial from Pleurotus ostreatus Mycelium and Residual Biomass, as an Alternative to Synthetic Materials. Chemical Engineering Transactions, v. 99, 2023, p. 91-96. https://doi.org/10.3303/CET2399016

XIE, XUEJU (SHERRY); CUI, STEVE W.; LI, WEI; TSAO, RONG. Isolation and characterization of wheat bran starch. Food Research International, v. 41, n. 9, 2008, p. 882-887. https://doi.org/10.1016/j.foodres.2008.07.016.

Cómo citar
Suesca Síaz, A., Medina Gutiérrez, A. C., Medina Rodríguez , P. J., & Morales Fonseca, D. M. (2024). Producción de un material biocompuesto a base de micelio por medio de fermentación sólida usando Pleurotus ostreatus. Biotecnología En El Sector Agropecuario Y Agroindustrial. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2334
Publicado
2024-04-17
Sección
Artículos de Investigaciòn
QR Code