Producción de un material biocompuesto a base de micelio por medio de fermentación sólida usando Pleurotus ostreatus
Resumen
El poliestireno expandido (EPS) es un material generalmente utilizado como embalaje y la cantidad de desechos de EPS acumulados en los vertederos ha impulsado el avance en la producción de materiales biocompuestos como los producidos a partir de micelios fúngicos. Este estudio tuvo como objetivo principal la producción de un material biocompuesto obtenido a partir del micelio de la cepa Pleurotus ostreatus usando afrecho de malta y salvado de trigo como sustrato con miras a ser usado como material para empaques y embalajes. Se realizaron tres mezclas diferentes, mezcla A (50 % afrecho y 50 % salvado); mezcla B (30 % afrecho y 70 % salvado) y mezcla C (0 % afrecho y 100 % salvado) para la realización de fermentaciones sólidas. Para la caracterización se midió el contenido de humedad, resistencia a la compresión, densidad, absorción de agua, conductividad eléctrica y pH. La mezcla que obtuvo mejor colonización y propiedades fue la mezcla A con valores de esfuerzo de compresión promedio de 110,04 kPa para un 10 % de deformación, absorción de agua máxima de 172,01 % (36 horas), pH de 5,88, conductividad eléctrica de 1860 µS/cm y una densidad de 233,17 kg/m3. Al comparar las propiedades con el EPS se encuentra que el esfuerzo a la compresión es similar, sin embargo, propiedades como la densidad y la absorción del agua presenta valores muy altos para que el biocompuesto pueda usarse en embalaje.
Descargas
Disciplinas:
Biotecnología, fermentación, Aprovechamiento de Biomasa, Biomasa lignocelulosicaLenguajes:
EspañolReferencias bibliográficas
AIDUANG, WORAWOOT; KUMLA, JATURONG; SRINUANPAN, SIRASIT; THAMJAREE, WANDEE; LUMYONG, SAISAMORN; SUWANNARACH, NAKARIN. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. Journal of Fungi, v. 8, n. 11, 2022, 1125. https://doi.org/10.3390/jof8111125
ALEMU, DIGAFE; TAFESSE, MESFIN; KANTI, AJOY; Mondal Mycelium-Based Composite: The Future Sustainable Biomaterial. International Journal of Biomaterials, 2022, 8401528. https://doi.org/10.1155/2022/8401528
ARAYA-FARIAS, MONICA; HUSSON, ERIC; SAAVEDRA-TORRICO, JORGE; GÉRARD, DORIANE; ROULARD, ROMAIN; GOSSELIN, ISABELLE; RAKOTOARIVONINA, HARIVONI; LAMBERTYN, VIRGINIE; RÉMOND, CAROLINE; SARAZIN, CATHERINE. Wheat Bran Pretreatment by Room Temperature Ionic Liquid-Water Mixture: Optimization of Process Conditions by PLS-Surface Response Design. Frontiers in Chemistry, v. 7, 2019. https://doi.org/10.3389/fchem.2019.00585
ASTM INTERNATIONAL. American Society for Testing and Materials D695-15: Standard Test Method for Compressive Properties of Rigid Plastics. Pennsylvania (USA): 2015, 8 p.
ASTM INTERNATIONAL. American Society for Testing and Materials C272/C272M: Standard Test Method for Water Absorption of Core Materials for Sandwich Constructions. Pennsylvania (USA): 2018, 4 p.
BELLETTINI, MARCELO-BARBA; FIORDA, FERNANDA-ASSUMPÇÃO; MAIEVES, HELAYNE-APARECIDA; TEIXEIRA, GERSON-LOPES; ÁVILA, SUELEN; HORNUNG, POLYANNA-SILVEIRA; JÚNIOR, AGENOR-MACCARI; RIBANI, ROSEMARY-HOFFMANN. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, v. 26, n. 4, 2019, p. 633-646.https://doi.org/https://doi.org/10.1016/j.sjbs.2016.12.005
BUTU, ALINA; RODINO, STELIANA; MIU, BOGDAN ANDREI; BUTU, MARIAN. Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures, v. 15, n. 4, 2020, p. 1129-1140. https://chalcogen.ro/1129_ButuM.pdf
CHARRONDIERE, RUTH; HAYTOWITZ, DAVID; STADLMAYR, BARBARA. FAO/INFOODS Density Database Version 2.0. Food and agriculture organization of the United Nations technical workshop report. 2012, 24 p. https://www.fao.org/3/ap815e/ap815e.pdf
COLMENARES, ELICEL; BAUTISTA, LUIS; OLIVEROS, CLEOMARY. Material ecológico con fines de embalaje a partir del hongo Pleurotus ostreatus y residuos orgánicos agroindustriales. Revista Científica Unet, v. 30, n. 1, 2018, p 324–332.
DOROŠKI, ANA; KLAUS, ANITA; REŽEK, ANET; DJEKIC, ILIJA. Food Waste Originated Material as an Alternative Substrate Used for the Cultivation of Oyster Mushroom (Pleurotus ostreatus): A Review. Sustainability, v. 14, n. 19, 2022, 12509.https://www.mdpi.com/2071-1050/14/19/12509
GARCIA, NATALIA. Evaluación del impacto ambiental de la aplicación de un plan de gestión posconsumo de poliestirenoexpandido (EPS) utilizado en el envase de alimentos en Colombia [Tesis de Maestría en Ingeniería de Procesos]. Bogotá (Colombia): Universidad EAN, 2019, 121 p.
GHAZVINIAN, ALI; FARROKHSIAR, PANIZ; VIEIRA, FABRICIO; PECCHIA, JHON; GURSOY, BENAY. Mycelium-Based Bio-Composites For Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. Matter - Material Studies And Innovation, v. 2, 2019, p. 505-514. https://doi.org/10.5151/proceedings-ecaadesigradi2019_465
GREGORI, ANDREJ; ŠVAGELJ, MIRJAN; PAHOR, BOJAN; BEROVIČ, MARIN; POHLEVEN, FRANC. The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. New Biotechnology, v. 25, n. 2-3, 2008, p. 157-161.https://doi.org/https://doi.org/10.1016/j.nbt.2008.08.003
HORTON, ALICE. Plastic pollution: When do we know enough? Journal of Hazardous Materials, v. 422, 2022, 126885.https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126885
HOUETTE, THIBAUT; MAURER, CHRISTOPHER; NIEWIAROWSKI, REMIK; GRUBER, PETRA. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics, v. 7, n. 3, 2022, p. 103. https://doi.org/10.3390/biomimetics7030103
SWITZERLAND. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: 9427 Wood-based panels — Determination of density. Geneva (Switzerland): 2003, 3p.
JONES, MITCHELL; MAUTNER, ANDREAS; LUENCO, STEFANO; BISMARCK, ALEXANDER; JOHN, SABU. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, v. 187, 2020, 108397.https://doi.org/https://doi.org/10.1016/j.matdes.2019.108397
JOSHI, KSHITJI; MEHER, MUKESH-KUMAR; POLURI, KRISHNA-MOHAN. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Applied Bio Materials, v. 3, n. 4, 2020, p. 1884-1892.https://doi.org/10.1021/acsabm.9b01047
MÄKELÄ, MIIA; GALKIN, SARI; HATAKKA, ANNELE; LUNDELL, TAINA. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology, v. 30, n. 4, 2002, p. 542-549. https://doi.org/10.1016/S0141-0229(02)00012-1
MARTÍNEZ-LÓPEZ, CRYSTELL; LAINES-CANEPA, JOSÉ. Poliestireno Expandido (EPS) y su problemática ambiental. KUXULKAB`, v. 19, n. 3, 2013, p. 63-65.https://revistas.ujat.mx/index.php/kuxulkab/article/download/339/262
MELO-PARRA, CLAUDIA-GIOVANNA. Evaluación de la colonización del hongo Pleurotus ostreatus en sustratos lignocelulósicos [Tesis ingeniería química]. Bogotá (Colombia): Fundación Universidad de América, Facultad de Ingeniería, 2021, 116p.
NASHIRUDDIN, NOOR-IDAYU; CHUA, KAI SHIN; MANSOR, AZMI-FADZIYANA; RAHMAN, ROSHANIDA; LAI, JAU-CHOY; WAN-AZELEE, NUR-IZYAN; EL-ENSHASY, HESHAM. Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy, v. 24, n. 1, 2022, p. 351-361. https://doi.org/10.1007/s10098-021-02146-4
MOLYGRAN. EPS Technical Data from Molygran. 2021. https://www.molygran.com/our-advice/eps-technical-data/ [consultado mayo 1 de 2023].
NILSEN-NYGAARD, JULIE; FERNÁNDEZ, ESTEFANÍA.; RADUSIN, TANJA; ROTABAKK, BJØRN-TORE; SARFRAZ, JAWAD; SHARMIN, NUSRAT; SIVERTSVIK, MORTEN; SONE, IZUMI; PETTERSEN, MARIT-KVALVÅG. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, v. 20, n. 2, 2021, p. 1333-1380. https://doi.org/https://doi.org/10.1111/1541-4337.12715
OBSERVATORY OF ECONOMIC COMPLEXITY (OEC). Wheat. 2022. https://oec.world/en/profile/hs/wheat [Consultado febrero 22 de 2024].
PALMER, KEVIN J.;, LAUDER, KERRI; CHRISTOPHER, KYESHAUN; GUERRA, FATIMA; WELCH, REBECCA; BERTUCCIO, ALEX J. Biodegradation of expanded polystyrene by larval and adult stages of Tenebrio molitor with varying substrates and beddings. Environmental Processes, v. 9, n. 1, 2022, p. 3. https://doi.org/10.1007/s40710-021-00556-6
PÉREZ, V.; MURILLO, J.M.; BADOS, R.; ESTEBAN, L.S.; RAMOS, R.; SÁNCHEZ, J.M. Preparation and gasification of brewers’ spent grains. Athens (Greece): Proceedings of the 5th International Conference on Sustainable Solid Waste Management, 2017, p. 1-12.
PRÜCKLER, MICHAEL; SIEBENHANDL-EHN, SUSANNE; APPRICH, SILVIA; HÖLTINGER, STEFAN; HAAS, CORNELIA; SCHMID, ERWIN; KNEIFEL, WOLFGANG. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, v. 56, n. 2, 2014, p. 211-221.https://doi.org/10.1016/j.lwt.2013.12.004
RAMLI-SULONG, NOR-HAFIZAH; MUSTAPA, SITI-AISYAH-SYAERAH; ABDUL-RASHID, MUHAMMAD-KHAIRI. Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, v. 136, n. 20, 2019, 47529.https://doi.org/https://doi.org/10.1002/app.47529
SISTI, LAURA; GIOIA, CLAUDIO; TOTARO, GRAZIA; VERSTICHEL, STEVEN; CARTABIA, MARCO; CAMERE, SERENA; CELLI, ANNAMARIA. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products, v. 170, 2021, 113742.https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113742
SIVAPRASAD, S.; BYJU, SIDHARTH. K.; PRAJITH, C.; SHAJU, JITHIN; REJEESH, C.R. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Materials Today: Proceedings, v. 47, 2021, p. 5038–5044.https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.622
STYLITE. Stylite Expanded Polystyrene - Datasheet. 2018. [Consultado mayo 11 de 2023].
TEIXEIRA, JUAN-LOPEZ; MATOS, MAXWELL-PACA; NASCIMENTO, BRENNO-LIMA; GRIZA, SANDRO; HOLANDA, FRANCISCO-SANDRO-RODRIGUES; MARINO, REGINA-HELENA. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, v. 42, n. 6, 2018, p. 676–684.https://doi.org/10.1590/1413-70542018426022318
VÁSQUEZ, LAURA S.; SOPO, VALENTINA; SUESCA-DÍAZ, ADRIANA; MORALES-FONSECA, DIANA. Elaboration of a Biomaterial from Pleurotus ostreatus Mycelium and Residual Biomass, as an Alternative to Synthetic Materials. Chemical Engineering Transactions, v. 99, 2023, p. 91-96.https://doi.org/10.3303/CET2399016
XIE, XUEJU (SHERRY); CUI, STEVE W.; LI, WEI; TSAO, RONG. Isolation and characterization of wheat bran starch. Food Research International, v. 41, n. 9, 2008, p. 882-887. https://doi.org/10.1016/j.foodres.2008.07.016.
Derechos de autor 2023 Universidad del Cauca

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.