Caracterización del epicarpio de guayaba (Psidium guajava L.) como alternativa natural para uso en productos alimenticios procesados

Palabras clave: Antioxidantes, Colorantes naturales, Compuestos fenólicos, Frutas tropicales.


Dentro de las frutas tropicales, la guayaba (Psidium guajava L.) es una de las más consumidas gracias a sus excelentes propiedades organolépticas y funcionales, rica en compuestos bioactivos. Su aprovechamiento agroindustrial genera gran cantidad de subproductos, incluido el epicarpio, el cual representa aproximadamente entre el 25 y el 30% del peso de la fruta. El objetivo de la presente investigación fue determinar, en el epicarpio de la guayaba, las propiedades fisicoquímicas, las coordenadas de color y caracterizarlo en su contenido de compuestos carotenoides y fenólicos, así como también determinar la actividad antioxidante del mismo. Se elaboró la harina de epicarpio de guayaba (HEG) y con base en métodos aprobados se le determinó rendimiento en peso, pH, acidez titulable, sólidos solubles, contenido de humedad, actividad de agua y parámetros de color, así como los compuestos bioactivos anotados. Los resultados, para los parámetros fisicoquímicos fueron altos y el contenido de compuestos carotenoides para las diferentes fracciones fluctuó entre 9,414 para la fracción de α-caroteno y 10,894 para la fracción de β-criptoxantina. La actividad antioxidante, arrojó un valor de 62,281% y el contenido de compuestos fenólicos fue de 24,948 mg EAG/g. Se concluye que la HEG puede ser utilizada como fuente de compuestos bioactivos naturales en la industria alimenticia.


La descarga de datos todavía no está disponible.


[1] RAMOS, M., JIMÉNEZ, A. and GARRIGÓS, M.C. Il-Bassed advanced techniques of value-added compounds from natural sources and found by-products. Trends in Analytical Chemistry, Avalaible online 31 July 2019.
[2] BECH, S. et al. Product and process variety management: case study in the food industry. Procedia CIRP, 81, 2019, p. 1065-1070.
[3] BUSSOLO DE SOUZA, C. et al. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioactive Carbohydrates and Dietary Fibre, 16, 2018, p. 90-99.
[4] SPINELLI, S. et al. Food by-products to fortified pasta: A new approach for optimization. Journal of Cleaner Production, 215, 2019, p. 985-991.
[5] LAFARGA P., T. V. et al. Revalorización de los subproductos de la industria de transformación de vegetales. Biblioteca Horticultura. Valencia (España): Serveis per la produccio editorial SPE3, 2018, 18 p.
[6] ROJAS-GARBANZO, C. et al. Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv. “criolla”) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Research International, 100(3), 2017, p. 445-453.
[7] COLOMBIA. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. Anuario estadístico del sector agropecuario 2016. Bogotá (Colombia): 2017, 290 p.
[8] NAGARAJAN, J. et al. A facile water-induced complexation of lycopene and pectin from pink guava byproduct: Extraction, characterization and kinetic studies. Food Chemistry, 296, 2019, p. 47-55.
[9] DA SILVA LIMA, R. et al. May de superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 2019, p. 451-459.
[10] CHANG, S.K., ALASALVAR, C. and SHAHIDI F. Superfruits: Phytochemicals, antioxidant, efficacies, and health effects – A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(10), 2019, p. 1580-1604.
[11] KATIA, C.R. et al. Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal, 9, 2017, p. 122-132.
[12] SERNA-COCK, L., MERA-AYALA, J.D. and ANGULO-LÓPEZ, J.E. Guava Psidium guajava seed flour and dry Aspergillus niger mycelium as nitrogen sources for the Production of biomass and antimicrobial compounds produced by Weissella confusa. Electronic Journal of Biotechnology, 16(6), 2013, p. 1-9.
[13] MARTÍNEZ-GIRÓN, J. and ORDÓÑEZ-SANTOS, L.E. Determinación de la concentración de pigmentos carotenoides en harina de residuos de chontaduro (Bactris gasipaes). Revista Producción + Limpia, 11(1), 2016, p. 85-93.
[14] BATISTA, P.F. et al. Bioactive compounds and antioxidant activity in guava fruit cultivated in Sub-Middle São Francisco Valley, Brazil. Abstracts 3rd International Symposium on Guava and Other Myrtaceae, Petronila, PE (Brasil): Embrapa, 2012, p. 51-52.
[15] ORDÓÑEZ-SANTOS, L.E. et al. Concentración de carotenoides totales en residuos de frutas tropicales. Producción + Limpia, 9(1), 2014, p. 91-98.
[16] MERHAN O. In: Carotenoids. Dragan J. Cvetkovic and Goram S. Nikolic. The biochemistry and antioxidant properties of carotenoids. Chapter 4. Intechopen, 2017, p. 51-66.
[17] MARTÍNEZ G., J. et al. Pigmentos vegetales y compuestos naturales aplicados en productos cárnicos como colorantes y/o antioxidantes: revisión. Inventium, 11(21), 2016, p. 51-62.
[18] NGBOLUA, K. N. et al. A review on the phytochemistry and pharmacology of Psidium guajava L. (Myrtaceae) and future direction. Discovery Phytomedicine, 5(2), 2018, p. 7-13.

[19] LOPEZ DOS SANTOS, W. N. et al. Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 2017, p. 583-592.
[20] ROJAS-GARBANZO, C. et al. Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum-Nied.) fruit and stability of main compounds during juice processing – (U)HPLC-DAD-ESI-TQD-MSn. Journal of Food Composition and Analysis, 75, 2019, 26-42.
[21] BLANCAS-BENITEZ, F.J. et al. In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava L.) fruit. Journal of Functional Foods, 43, 2018, p. 139-145.
[22] MAJOU, D. and CHRISTIEANS, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Science, 145, 2018, p. 273-284.
[23] CARDINALLI, F. et al. Microbial dynamics of model Fabriano-like fermented sausages as affected by starter cultures, nitrates and nitrites. International Journal of Food Microbiology, 278, 2018, p. 61-72.
[24] HAMDI, M. et al. Improvement of the quality and the shelf life of reduced-nitrites turkey meat sausages incorporated with carotenoproteins from crabs shells. Food Control, 91, 2018, p. 148-159.
[25] FLORES, M. et al. Risk assessment of chemical substances of safety concern generated in processed meats. Food Science and Human Wellness, Avalaible online 29 July 2019.
[26] INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS (ICONTEC). NTC 4592, NTC 4624, NTC 4623: Fruit and vegetable products. Determination of pH, Determination of soluble solids content, Determination of Titrable Acidity. Bogotá (Colombia): 1999, 21 p.
[27] ASSOCIATION OF CHEMICAL ANALYTICAL CHEMISTS (AOAC). Official Methods of Analysis, Methods 925.09: Moisture in cassava – air oven methods. Washington D.C., USA, 2005.
[28] ASSOCIATION OF CHEMICAL ANALYTICAL CHEMISTS (AOAC). Official Methods of Analysis, Methods 978.19. Maryland, USA, 2000.
[29] MARTÍNEZ-GIRÖN, J. et al. Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth Arecaceae) obtenida por secado convectivo. Ciencia y Tecnologia Agropecuaria, 18(3), 2017, p. 599-613.
[30] SINGLETON, V. L., ORTHOFER, R. and RAVENTÓS, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 1999, p. 152-178.
[31] VASCONCELOS, M. C.E. et al. Fruits from Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, 245, 2018, p. 305-311.
[32] FORMIGA, A.S. et al. Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava "Pedro Sato”. Food Chemistry, 290, 2019, p. 144-151.
[33] MARTÍNEZ-ORTIZ, M.A. et al. Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Scientia-Horticulturae, 256, 2019, 108604.
[34] ZAMBRANO-ZARAGOZA, M.L. et al. Use of solid Lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 51(2), 2013, p. 946-953.
[35] ALAMAR, P.D. et al. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Research International, 85, 2016, p. 209-214.
[36] MOON, P. et al. Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages. Scientia Horticulturae, 238, 2018, p. 375-383.
[37] MURMU, S.B. and MISHRA, H.N. Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low-storage. Food Chemistry, 253, 2018, p. 55-62.
[38] SILVA, W.B. et al. Chitosan delays ripening and ROS Production in guava (Psidium guajava L.) fruit. Food Chemistry, 242, 2018, p. 232-238.
[39] PAAKKI, M. et al. The importance of the visual aesthetics of colours in food at a workday lunch. International Journal of Gastronomy and Food Science, 16, 2019, 100131.
[40] SUAREZ C., S. et al. Ultrasound processing of guava juice: effect on structure, physical properties and lycopene in vitro accessibility, Food Chemistry, 268, 2018, p. 594-601.
[41] LANG, E. et al. Modeling the heat inactivation of foodborne pathogens in milk powder: high relevance of the substrate water activity. Food Research International, 99(1), 2017, p. 577-585.
[42] NORA, C. D. et al. Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens). Journal of Food Composition and Analysis, 34(1), 2014, p. 18-25.
[43] BORDIGA, M. et al. Characterization of peel and pulp proanthocyanidins and carotenoids during ripening in persimmon “Kaki Tipo” cv, cultivated in Italy. Food Research International, 120, 2019, p. 800-809.
[44] SÁNCHEZ-CAMARGO, A. P. et al. Valorization of mango peel: proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. The Journal of Supercritical Fluids, 152, 2019, 104574.
[45] NORONHA, K. A. et al. Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 2019, p. 216-221.
[46] KONG, K. W. and ISMAIL, A. Lycopene content and lipophilic antioxidant capacity of by-products from Psidium guajava fruits produced during puree production industry. Food and Bioproducts Processing, 89(1), 2011, p. 53-61.
[47] MURMU, S. B. and MISHRA, H. N. The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245, 2018, p. 820-828.
[48] NAIR, M. S., SAXENA, A, and KAUR, C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry, 240, 2018, p. 245-252.
[49] WOLF, A. P. and CYLOS, C.M. Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava L.) “Paluma” cv. Revista Brasileira de Fruticultura, 40(2), 2018, 1-11.
[50] SOUZA, M. S. B. et al. Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciencia e Agrotecnologia, 35(3), 2011, p. 554-559.
[51] ADEMILUYI, A. O. et al. A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. Comparative Clinical Pathology, 25(2), 2016, p. 363-374.
[52] VASCO, C., RUALES, J. and KAMAL-ELDIN, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4), 2008, p. 816-823.
Cómo citar
Hleap Zapata, J. I., Velasco Arango, V. A., Bernal Martínez, A. A., & Ordóñez Santos, L. E. (2020). Caracterización del epicarpio de guayaba (Psidium guajava L.) como alternativa natural para uso en productos alimenticios procesados. Biotecnología En El Sector Agropecuario Y Agroindustrial, 18(2), 26-36.
Artículos de Investigaciòn