Aspergillus niger y Rhizopus oryzae inmovilizados para la producción de almidón modificado

  • Alvaro Esteban Aldana Porras Universidad del Tolima
  • Diego Fernando Montoya Yepes Universidad del Tolima
  • Walter Murillo Arango Universidad del Tolima
  • Jonh Jairo Méndez Arteaga Universidad del Tolima
Palabras clave: Hidrólisis, Esterificación, Hongos inmovilizados, Estropajo, Biotecnología para el aprovechamiento de subproductos, Almidón

Resumen

La modificación de polímeros naturales es llevada a cabo para ampliar la funcionalidad y usos industriales de los mismos. El uso de microorganismos como fuente enzimática para estas tecnologías proporciona protección de las biomoléculas frente a las condiciones del medio, reutilización, bajo costo, facilidad en su cultivo y aplicación. En este sentido, este estudio se enfocó en la inmovilización de Aspergillus niger y Rhizopus oryzae, como fuente primaria de enzimas requeridas para la acilación e hidrolisis de almidón. Esto mediante el uso de extracto de salvado de arroz como medio de crecimiento y el estropajo como soporte para la inmovilización. Se alcanzaron concentraciones de proteína de 30,7 ± 0,3 y 24,9 ± 0,3 (mg/cm3 de soporte) respectivamente, en el modelo de acilación, se observó una modificación química de los polímeros causada por las condiciones de reacción, obteniendo materiales con propiedades funcionales variables. En hidrólisis se logró un 40% de degradación, posibilitando la obtención de diferentes derivados de almidón. En este sentido, el desempeño en hidrólisis, la concentración proteica de los microorganismos, el estropajo como soporte y el extracto de salvado de arroz como medio inductor de enzimas, promueven este sistema como una alternativa económica para los procesos de modificación industrial.

Descargas

Los datos de descargas todavía no están disponibles.

Disciplinas:

Biotecnología, Aprovechamiento de subproductos

Lenguajes:

Español; Castellano

Referencias bibliográficas

ABBAS-BUTT, NATASHA; MOHSIN-ALI, TAHIRA; HASNAIN, ABID. Rheological characterization of cold-water soluble rice (Oryza sativa) starch lactates and citrates prepared via alcoholic-alkaline method. International journal of biological macromolecules, v. 123, 2019, p. 558-568. https://doi.org/10.1016/j.ijbiomac.2018.11.076

AHMED, SUHAD; ABOOD, NAGHAM. Effect of some growth factors on protease production by Rhizopus oryzae. Al-Nahrain Journal of Science, v. 20, n. 2, 2017, p. 90-95. 10.22401/JUNS.20.2.12

AVWIOROKO, OGHENETEGA; ANIGBORO, AKPOVWEHWEE; UNACHUKWU, NNANNA; TONUKARI, NYERHOVWO. Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. Biochemistry and biophysics reports, v. 14, 2018, p. 35-42.https://doi.org/10.1016/j.bbrep.2018.03.006

AZMI, A.S.; MALEK, M.I.A.; PUAD, N.I.M. A review on acid and enzymatic hydrolyses of sago starch. International Food Research Journal, v. 24, n. Suppl, 2017.

BAN, KAZUHIRO; KAIEDA, MASARU; MATSUMOTO, TAKESHI; KONDO, AKIHIKO; FUKUDAC, HIDEKI. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical engineering journal, v. 8, n. 1, 2001, p. 39-43. https://doi.org/10.1016/S1369-703X(00)00133-9

CHANDRA, SUBHOSH; VISWANATH, BUDDOLLA; REDDY, RAJASEKHAR. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian Journal of Microbiology, v. 47, n. 4, 2007, p. 323-328.https://doi.org/10.1007/s12088-007-0059-x

CHEN, YING; CHEONG, LING-ZHI; ZHAO, JIAHE; PANPIPAT, WORAWAN; WANG, ZHIPAN; LI, YE; LU, CHENYANG; ZHOU, JUN; SU, XIURONG. Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. International journal of biological macromolecules, v. 123, 2019, p. 261-268. https://doi.org/10.1016/j.ijbiomac.2018.11.049

CLASEN, SAMUEL; MÜLLER, CARMEN; PARIZE, ALEXANDRE; PIRESD, ALFREDO. Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction. Carbohydrate polymers, v. 180, 2018, p. 348-353. https://doi.org/10.1016/j.carbpol.2017.10.016

COSTA, MARCIA; ÑERCHUNDI, GERHARD; VILLARROEL, FRANCISCO; TORRER, MARCELO; SCHOBITZ, RENATE. Producción de enzima fitasa de Aspergillus ficuum con residuos agroindustriales en fermentación sumergida y sobre sustrato sólido. Revista Colombiana de Biotecnología, v. 11, n. 1, 2009, p. 73-83.http://dx.doi.org/10.15446/rev.colomb.biote.v15n2.38025

DINARVAND, MOJDEH; REZAEE, MALAHAT; FOROUGHI, MAJID. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Brazilian journal of microbiology, v. 48, n. 3, 2017, p. 427-441.https://doi.org/10.1016/j.bjm.2016.10.026

EL-OKKI, AMEL AIT KAKI-EL HADEF; GAGAOUA, MOHAMMED; BENNAMOUN, LEILA; DJEKRIF, SHAHRAZED; HAFID, KAHINA; EL-OKKI, MOHAMED-EL HADEF; MERAIHI, ZAHIA. Statistical optimization of thermostable α-amylase production by a newly isolated Rhizopus oryzae strain FSIS4 using decommissioned dates. Waste and Biomass Valorization, v. 8, n. 6, 2017. https://doi.org/10.1007/s12649-016-9727-6

GULDHE, ABHISHEK; SINGH, POONAM; KUMARI, SHEENA; RAWAT, ISMAIL; PERMAUL, KUGEN; BUX, FAIZAL. Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renewable Energy, v. 85, 2016, p. 1002-1010.https://doi.org/10.1016/j.renene.2015.07.059

HAMA, SHINJI; TAMALAMPUDI, SRIAPPAREDDY; FUKUMIZU, TAKAHIRO; MIURA, KAZUNORI; YAMAJI, HIDEKI; KONDO, AKIHIKO; FUKUDAA, HIDEKI. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. Journal of bioscience and bioengineering, v. 101, n. 4, 2006, p. 328-333. https://doi.org/10.1263/jbb.101.328

HORCHANI, HABIB; CHAÂBOUNI, MONCEF; GARGOURI, YOUSSEF; SAYAR, I ADEL. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohydrate Polymers, v. 79, n. 2, 2010, p. 466-474. https://doi.org/10.1016/j.carbpol.2009.09.003

KARAMBWALAA, EMAN; WAHABA, ABDEL; SALEHA, SHIREEN; HASSAN, MOHAMED; KANSOH, AMANY; ESAWYA, MONA. Immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase macromolecules. International journal of biological Production, v. 102, 2017, p. 694-703.https://doi.org/10.1016/j.ijbiomac.2017.04.033

LOPEZ-TRUJILLO, JUAN; MEDINA-MORALES, MIGUEL; SANCHEZ-FLORES, ARIEL; AREVALO, CARLOS; ASCACIO-VALDES, JUAN; MELLADO, MIGUEL; AGUILAR, CRISTOBAL; AGUILERA-CARBO, ANTONIO. Solid bioprocess of tarbush (Flourensia cernua) leaves for β-glucosidase production by Aspergillus niger: initial approach to fiber–glycoside interaction for enzyme induction. Biotech, v. 7, n. 4, 2017, p. 271.https://doi.org/10.1007/s13205-017-0883-6

MONROY, YULIANA; RIVERO, SANDRA; GARCÍA, MARÍA. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics sonochemistry, v. 42, 2018, p. 795-804.https://doi.org/10.1016/j.ultsonch.2017.12.048

MONTOYA, DIEGO; MURILLO, WALTER; BARBOSA, LUIS-OVEIMAR; MÉNDEZ, JONH-JAIRO. Acetilación enzimática de almidones: una opción de valor agregado. Revista Tumbaga, v. 1, 2015, p. 88-108.

NEMA, ASHUTOSH; PATNALA, SAI-HARITHA; MANDARI, VENKATESH; KOTA, SOBHA; DEVARAI, SANTHOSH-KUMAR. Production and optimization of lipase using Aspergillus niger MTCC 872 by solid-state fermentation. Bulletin of the National Research Centre v. 43, n. 1, 2019, p. 82. https://doi.org/10.1186/s42269-019-0125-7

OLIVEIRA, HUGO; CORREIA, VERÓNICA; SEGUNDO, MARCELA; FONSECA, ANTÓNIO; CABRITA , ANA. Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT, v. 84, 2017, p. 674-685. https://doi.org/10.1016/j.lwt.2017.06.035

OLUWABUNMI, ATOLAGBE; ADESOLA, AJAYI; GRACE, OLASEHINDE. Production and Characterization of Partially Purified α-amylase from Aspergillus niger. Journal of Physics: Conference Series, v. 1378, n. 4, 2019, p. 042077.

1088/1742-6596/1378/4/042077

OSHO, MICHAEL; SOLOMON, THANKGOD. Use of composite agro-substrates for amyloglucosidase synthesis and characterization by Aspergillus niger OTF and Aspergillus flavus CLOR1 USING solid state fermentation. The Journal of Microbiology, Biotechnology and Food Sciences, v. 9, n. 5, 2020, p. 879.10.15414/jmbfs.2020.9.5.879-883

RAKCHAI, NARUEMON; KITTIKUN, ARAN H.; ZIMMERMANN, WOLFGANG. The production of immobilized whole-cell lipase from Aspergillus nomius ST57 and the enhancement of the synthesis of fatty acid methyl esters using a two-step reaction. Journal of Molecular Catalysis B: Enzymatic, v. 133, 2016, p. S128-S136.https://doi.org/10.1016/j.molcatb.2016.12.006

REDDY, CHAGAM-KOTESWAR; CHOI, SO-MANG; LEE, DONG-JIN; LIM, SEUNG-TAIK. Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch. Food chemistry, v. 244, 2018, p. 136-142.https://doi.org/10.1016/j.foodchem.2017.10.040

REZA-FALSAFI, SEID; MAGHSOUDLOU, YAHYA; ROSTAMABADI, HADIS; MAHDI- ROSTAMABADI, MOHAMMAD; HAMEDI, HASSAN; HASHEM-HOSSEINIE, SEYED- MOHAMMAD. Preparation of physically modified oat starch with different sonication treatments. Food hydrocolloids, v. 89, 2019, p. 311-320.https://doi.org/10.1016/j.foodhyd.2018.10.046

ROSALES, ANA; RODRÍGUEZ, CARLOS; BALLEN-SEGURA, MIGUEL. Remoción de contaminantes y crecimiento del alga Scenedesmus sp. en aguas residuales de curtiembres, comparación entre células libres e inmovilizadas. Ingeniería y Ciencia, v. 14, n. 28, 2018, p. 11-34. https://doi.org/10.17230/ingciencia.14.28.1

SEO, TAE-RANG; KIM, JONG-YEA; LIM, SEUNG-TAIK. Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Science and Technology, v. 64, n. 2, 2015, p. 889-897.https://doi.org/10.1016/j.lwt.2015.06.021

SEPÚLVEDA, LEONARDO; LARIOS-CRUZ, RAMÓN; LONDOÑO, LILIANA; HERNÁNDEZ, AYERIM; ÁLVAREZ, BERENICE; RAMÍREZ, NATHIELY; TORRES, CRISTIAN; NEIRA, ALBERTO; MARTÍNEZ, JOSÉ; VENTURA-SOBREVILLA, JANETH; BOONE-VILLA, DANIEL; AGUILAR, CRISTOBAL. En: Production and Recovery of Enzymes for Functional Food Processing. Functional Foods and Biotechnology. CRC Press, 2020, p. 227-228. 10.1201/9781003003793-13

SHAH, ASIMA; MASOODI, F.A.; ADIL, GANI; BILAL-AHMAD, ASHWAR. Physicochemical, rheological and structural characterization of acetylated oat starches. LWT, v. 80, 2017, p. 19-26. https://doi.org/10.1016/j.lwt.2017.01.072

SHELDON, ROGER; PEREIRA, PEDRO. Biocatalysis engineering: the big picture. Chemical Society Reviews, v. 46, n. 10, 2017, p. 2678-2691. https://doi.org/10.1039/C6CS00854B

TAKÓ, MIKLÓS; KOTOGÁN, ALEXANDRA; PAPP, TAMÁS; KADAIKUNNAN, SHINE; ALHARBI, NAIYF; VÁGVÖLGYI, CSABA. Purification and properties of extracellular lipases with transesterification activity and 1, 3-regioselectivity from Rhizomucor miehei and Rhizopus oryzae. Journal of microbiology and biotechnology, v. 27, n. 2, 2017, p. 277-288. https://doi.org/10.4014/jmb.1608.08005

WANG, DANLI; MA, XIAOBIN; YAN, LUFENG; CHANTAPAKUL, THUNTHACHA; WANG, WENJUN; DING, TIAN; YE, XINGQAN; LIU, DONGHONG. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate polymers, v. 175, 2017, p. 47-54.

https://doi.org/10.1016/j.carbpol.2017.06.093

ZHAN, JINLING; XIWEN, ZHANG; RONGRONG, MA; YAOQI, TIAN. Designing Lipase‐Compatible Ionic Liquids as Novel Solvents for Starch Ester Biosynthesis. Starch‐Stärke, v. 72, n. 1-2, 2020, p. 1900120.https://doi.org/10.1002/star.201900120

ZHUA, JIE; ZHANG, SHUYAN; ZHANG, BINJIA; QIAO, DONGLING; PU, HUAYIN; LIUBLINLI, SIYUAN. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. International journal of biological macromolecules, v. 97, 2017, p. 123-130. https://doi.org/10.1016/j.ijbiomac.2017.01.033

Cómo citar
Aldana Porras, A. E., Montoya Yepes, D. F., Murillo Arango , W., & Méndez Arteaga , J. J. (2021). Aspergillus niger y Rhizopus oryzae inmovilizados para la producción de almidón modificado. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2), 69–81. https://doi.org/10.18684/bsaa.v19.n2.2021.1544
Publicado
2021-01-22
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: