Obtención de nanoemulsiones de Cúrcuma longa l. y su aplicación en bebida acuosa
Resumen
La curcumina contrarresta diversas patologías como el cáncer y enfermedades neurodegerativas. Sin embargo, su solubilidad es baja en soluciones acuosas limitando su aplicación. Este estudio busca obtener una emulsión estable aceite en agua (O/W) a base de oleorresina de Cúrcuma longa (ORC) y aplicarla en una bebida acuosa como alternativa al uso de colorantes artificiales como la tartrazina. Se formularon dos tipos de emulsión: con oleorresina (EORC) y curcumina comercial 75% (ECC), se caracterizaron mediante porcentaje de retención de curcumina (%CR), contenido de fenoles totales (TPC), estabilidad física y tamaño de partícula mediante microscopía electrónica de trasmisión (TP), luego se aplicaron en bebidas acuosas, caracterizadas por % CR, TP y turbidez (T). Se obtuvieron nanoemulsiones estables para EORC y ECC con TP de 10,201 nm y 13,847 nm, %CR de 67,136 y 81,991% y TPC de 35,466 y 36,128 mg EAG/L emulsión respectivamente. En las bebidas, el %CR para EORC y ECC fue de 80,014 y 20,048%, TP de 5,732 nm y 5,309 nm respectivamente. La bebida con EORC presentó mayor turbidez en comparación a ECC y tartrazina (control). Se obtuvieron bebidas estables en el tiempo, pero EORC presentó mayor %CR, la cual puede ser una alternativa potencial como colorante y antioxidante en bebidas acuosas.
Descargas
Referencias bibliográficas
ADITYA, N.P.; ADITYA, S.; YANG, H.J.; KIM, H.W.; PARK, S.O.; LEE, J.; KO, S. Curcumin and Catechin Co-Loaded Water-in-Oil-in-Water Emulsion and Its Beverage Application. Journal of Functional Foods, v. 15, 2015, p. 35–43.https://doi.org/10.1016/j.jff.2015.03.013
AHMED, K.; LI, Y.; MCCLEMENTS, D.J.; XIAO, H. Nanoemulsion- and Emulsion-Based Delivery Systems for Curcumin: Encapsulation and Release Properties. Food Chemistry, v. 132, n. 2, 2012, p. 799807.https://doi.org/10.1016/j.foodchem.2011.11.039
ARAIZA-CALAHORRA, A.; AKHTAR, M.; SARKAR, A. Recent Advances in Emulsion-Based Delivery Approaches for Curcumin: From Encapsulation to Bioaccessibility. Trends in Food Science and Technology, v. 71, 2018, p. 155–169.https://doi.org/10.1016/j.tifs.2017.11.009
ASWATHANARAYAN, J.B.; VITTAL, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Frontiers in Sustainable Food Systems, v. 3, 2019, p. 1–21.https://doi.org/10.3389/fsufs.2019.00095
AZMI, N.A.N.; ELGHARBAWY, A.A.M.; MOTLAGH, S.R.; SAMSUDIN, N.; SALLEH, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, v. 7, n. 9 2019, p. 617.https://doi.org/10.3390/pr7090617
BAGHERI, H.; GHASEMI, F.; BARRETO, G.E.; RAFIEE, R.; SATHYAPALAN, T.; SAHEBKAR, A. Effects of Curcumin on Mitochondria in Neurodegenerative Diseases. BioFactors, v. 46, n. 1, 2020, p. 5–20.https://doi.org/10.1002/biof.1566
BHATT, D.; VYAS, K.; SINGH, S.; JOHN, P.J.; SONI, I. Tartrazine Induced Neurobiochemical Alterations in Rat Brain Sub-Regions. Food and Chemical Toxicology, v. 113, 2018, p. 322–327.https://doi.org/10.1016/j.fct.2018.02.011
BONCIU, E.; ROSCULETE, E.; ROSCULETE, C.A. The clastogenic effect of tartrazine, a synthetic yellow dye, in plant meristematic tissues. Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series. v. 49, 2019.
http://anale.agro-craiova.ro/index.php/aamc/article/view/876
DANAFAR, H.; SHARAFI, A.; KHEIRI, S.; MANJILI, H.K. CoDelivery of Sulforaphane and Curcumin with Pegylated Iron Oxide-Gold Core Shell Nanoparticles for Delivery to Breast Cancer Cell Line. Iranian Journal of Pharmaceutical Research, v. 17, n. 2, 2018, p. 480–494. https://doi.org/10.2g2037/ijpr.2018.2239
GHAYOUR, N.; HOSSEINI, S.M.H.; ESKANDARI, M.H.; ESTEGHLAL, S.; NEKOEI, A.R.; HASHEMI-GAHRUIE, H.; TATAR, M.; NAGHIBALHOSSAINI, F. Nanoencapsulation of Quercetin and Curcumin in Casein-Based Delivery Systems. Food Hydrocolloids, v. 87, 2019, p. 394–403.https://doi.org/10.1016/j.foodhyd.2018.08.031
GORDON, O.N.; LUIS, P.B.; ASHLEY, R.E.; OSHEROFF, N.; SCHNEIDER, C. Oxidative Transformation of Demethoxy and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα. Chemical Research in Toxicology, v. 28, n. 5, 2015, p. 989–996.https://doi.org/10.1021/acs.chemrestox.5b00009
GRANATO, D.; BARBA, F.J.; KOVAČEVIĆ, D.B.; LORENZO, J.M.; CRUZ, A.G.; PUTNIK, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annual Review of Food Science and Technology, v. 11, n.1, 2020, p. 93-118.https://doi.org/10.1146/annurev-food-032519-051708
JAKUBEK, M.; KEJÍK, Z.; KAPLÁNEK, R.; HROMÁDKA, R.; ŠANDRIKOVÁ, V.; SÝKORA, D.; ANTONYOVÁ, V.; URBAN, M.; DYTRYCH, P.; MIKULA, I.; MARTÁSEK, P.; KRÁL, V. Strategy for Improved Therapeutic Efficiency of Curcumin in the Treatment of Gastric Cancer. Biomedicine and Pharmacotherapy, v. 118, 2019.https://doi.org/10.1016/j.biopha.2019.109278
JAMWAL, R. Bioavailable Curcumin Formulations: A Review of Pharmacokinetic Studies in Healthy Volunteers. Journal of Integrative Medicine, v. 16, n. 6, 2018, p. 367–374.https://doi.org/10.1016/j.joim.2018.07.001
KHARAT, M.; DU, Z.; ZHANG, G.; MCCLEMENTS, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of PH, Temperature, and Molecular Environment. Journal of Agricultural and Food Chemistry, v. 65, n. 8, 2017, p. 1525–1532.https://doi.org/10.1021/acs.jafc.6b04815
KHARAT, M.; ZHANG, G.; MCCLEMENTS, D.J. Stability of Curcumin in Oil-in-Water Emulsions: Impact of Emulsifier Type and Concentration on Chemical Degradation. Food Research International, v. 111, 2018, p. 178–186.https://doi.org/10.1016/j.foodres.2018.05.021
KIM, S.O.; HA, T.V.A.; CHOI, Y.J.; KO, S. Optimization of Homogenization-Evaporation Process for Lycopene Nanoemulsion Production and Its Beverage Applications. Journal of Food Science, v. 79, n. 8, 2014, p. 12–14.https://doi.org/10.1111/1750-3841.12472
KUMAR, M.; BISHNOI, R.S.; SHUKLA, A.K.; JAIN, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Preventive Nutrition and Food Science, v. 24, n. 3, 2019, p. 225–234.https://doi.org/10.3746/pnf.2019.24.3.225
LI, M.; NGADI, M.O.; MA, Y. Optimization of Pulsed Ultrasonic and Microwave-Assisted Extraction for Curcuminoids by Response Surface Methodology and Kinetic Study. Food Chemistry, v. 165, 2014, p. 29–34.https://doi.org/10.1016/j.foodchem.2014.03.115
LIU, Q.; HUANG, H.; CHEN, H.; LIN, J.; WANG, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules, v. 24, n. 23, 2019, p. 1–37.https://doi.org/10.3390/molecules24234242
LU, P.S.; INBARAJ, B.S.; CHEN, B.H. Determination of Oral Bioavailability of Curcuminoid Dispersions and Nanoemulsions Prepared from Curcuma longa Linnaeus. Journal of the Science of Food and Agriculture, v. 98, n. 1, 2018, p. 51–63.https://doi.org/10.1002/jsfa.8437
MACHADO, A.P.D.F.; PASQUEL-REÁTEGUI, J.L.; BARBERO, G.F.; MARTÍNEZ, J. Pressurized Liquid Extraction of Bioactive Compounds from Blackberry (Rubus Fruticosus L.) Residues: A Comparison with Conventional Methods. Food Research International, v. 77, 2015, p. 675–683. https://doi.org/10.1016/j.foodres.2014.12.042
MARTÍNEZ-GUERRA, J.; PALOMAR-PARDAVÉ, M.; ROMERO-ROMO, M.; CORONA-AVENDAÑO, S.; ROJAS-HERNÁNDEZ, A.; RAMÍREZ-SILVA, M.T. New Insights on the Chemical Stability of Curcumin in Aqueous Media at Different PH: Influence of the Experimental Conditions. International Journal of Electrochemical Science, v. 14, n. 6, 2019, p. 5373–5385.https://doi.org/10.20964/2019.06.24
MC CLEMENTS, D.J.; JAFARI, S.M. General Aspects of Nanoemulsions and Their Formulation. Nanoemulsions: Formulation, Applications, and Characterization, 2018, p. 3–20.https://doi.org/10.1016/B978-0-12-811838-2.00001-1
PATIL, S.; RANVEER, R.C.; DEBAJE, P.P.; KADAM, J.H.; SAHOO, A.K. Ultrasound Assisted Extraction of Curcumin. Asian J. Dairy & Food Res, v. 37, n. 3, 2018, p. 250–252.https://doi.org/10.18805/ajdfr.DR-1356
PATIL, S.S.; BHASARKAR, S.; RATHOD, V.K. Extraction of Curcuminoids from Curcuma longa: Comparative Study between Batch Extraction and Novel Three Phase Partitioning. Preparative Biochemistry and Biotechnology, v. 49, n. 4, 2019, p. 407–418. https://doi.org/10.1080/10826068.2019.1575859
SANDEEP, I.S.; DAS, S.; NAYAK, S.; MOHANTY, S. Chemometric Profile of Curcuma longa L. Towards Standardization of Factors for High Essential Oil Yield and Quality. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, v. 88, n. 3, 2018, p. 949–957.https://doi.org/10.1007/s40011-016-0831-y
SINGLETON, V.L.; ORTHOFER, R.; LAMUELA-RAVENTÓS, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology, v. 299, 1999, p. 152–178.https://doi.org/10.1016/S0076-6879(99)99017-1
SUGUMAR, S.; MUKHERJEE, A.; CHANDRASEKARAN, N. Nanoemulsion Formation and Characterization by Spontaneous Emulsification: Investigation of Its Antibacterial Effects on Listeria monocytogenes. Asian Journal of Pharmaceutics, v. 9, n. 1, 2015, p. 23.https://doi.org/10.4103/0973-8398.150033
SYED, H.K.; LIEW, BIN; LOH, G.O.K.; PEH, K.K. Stability Indicating HPLC-UV Method for Detection of Curcumin in Curcuma longa Extract and Emulsion Formulation. Food Chemistry, v. 170, 2015, p. 321–326.https://doi.org/10.1016/j.foodchem.2014.08.066
VIJAYAN, U.K.; VARAKUMAR, S.; SINGHAL, R.S. A Comparative Account of Extraction of Oleoresin from Curcuma Aromatica Salisb by Solvent and Supercritical Carbon Dioxide: Characterization and Bioactivities. LWT, v. 116, 2019.https://doi.org/10.1016/j.lwt.2019.108564
WAKTE, P.S.; SACHIN, B.S.; PATIL, A.A.; MOHATO, D.M.; BAND, T.H.; SHINDE, D.B. Optimization of Microwave, Ultra-Sonic and Supercritical Carbon Dioxide Assisted Extraction Techniques for Curcumin from Curcuma longa. Separation and Purification Technology, v. 79, n. 1, 2011, p. 50–55.https://doi.org/10.1016/j.seppur.2011.03.010
WANG, L.; LU, N.; ZHAO, L.; QI, C.; ZHANG, W.; DONG, J.; HOU, X. Characterization of Stress Degradation Products of Curcumin and Its Two Derivatives by UPLC–DAD–MS/MS. Arabian Journal of Chemistry, v. 12, n. 8, 2019, p. 3998–4005.https://doi.org/10.1016/j.arabjc.2016.02.003
WOLFE, K.; Wu, X.; Liu, R. H. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, v. 51, n. 3, 2003, p. 609–614 https://doi/10.1021/jf020782a
Derechos de autor 2021 Universidad del Cauca

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados
Es decir,que aún siendo la Revista Biotecnología en el Sector Agropecuario y Agroindustrial (BSAA) de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.
Datos de financiación
-
Universidad Nacional de Colombia
Grant number 42119