Ultrasonido en el procesamiento (homogenización, extracción y secado) de alimentos
Resumen
En los últimos años el uso del ultrasonido en el procesamiento de los alimentos se ha incrementado debido a las ventajas que presenta sobre los procesos convencionales por la reducción de tiempos y temperatura, mezclado efectivo, aumento de la transferencia de masa y energía, la reducción de los gradientes térmicos y de concentración, extracción selectiva, una respuesta más rápida al control de procesos de extracción, aumento de la tasa de producción, eliminación de microorganismos y enzimas sin destruir los nutrientes de los alimentos. Además, de considerarse una tecnología limpia, aplicable en las diferentes fases del procesamiento de alimentos como: secado, homogeneización y extracción. El ultrasonido de baja potencia (alta frecuencia) se utiliza para el seguimiento de la composición y propiedades fisicoquímicas de los componentes del alimento y el de alta potencia (baja frecuencia) induce cambios mecánicos, físicos químicos y bioquímicos por acción de la cavitación, que soporta muchas operaciones de procesamiento de alimentos. Esta revisión resume la aplicación del ultrasonido en el procesamiento de homogenización, extracción y secado en alimentos, con el fin de conocer los aspectos generales: definición, mecanismos, efectos; aplicaciones y futuras tendencias de aplicación en la industria alimentaria.Descargas
Referencias bibliográficas
OHLSSON, T. and BENGTSSON, N. Minimal processing technologies in the food industry. 1 ed. Cambridge (England): Woodhead Publishing, 2002, p. 34-57
MASON, T.J., PANIWNYK, L. and LORIMER, J.P. The uses of ultrasound in food technology. Ultrasonics sonochemistry, 3(3), 1996, p. S253-S260.
CHEMAT, F., ZILL E, H. and KHAN, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 2011, p. 813-835.
JOYCE, E.M. and MASON, T.J. Sonication used as a biocide. A review: ultrasound a greener alternative to chemical biocides. Chemistry Today, 26(6), 2008, p. 22-26.
ROBLES-OZUNA, L.E. and OCHOA-MARTÍNEZ, L.A. Ultrasonido y sus aplicaciones en el procesamiento de alimentos. Revista Iberoamericana de Tecnología Postcosecha, 13(2), 2012, p. 109-122.
KACI, M., ARAB-TEHRANY, E., DESJARDINS, I., BANON-DESOBRY, S. and DESOBRY, S. Emulsifier free emulsion: Comparative study between a new high frequency ultrasound process and standard emulsification processes. Journal of Food Engineering, 194, 2017, p. 109-118.
SILVA, E.K., GOMES, M.T.M., HUBINGER, M.D., CUNHA, R.L. and MEIRELES, M.A.A. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 47, 2015, p. 1-13.
SANI, A.M. and SARDARODIYAN, M. Ultrasound applications for the preservation, extraction, processing and quality control of food. BioTechnology: An Indian Journal, 12(4), 2016, p. 162-174.
KACI, M., ARAB-TEHRANY, E., DOSTERT, G., DESJARDINS, I., VELOT, E. and DESOBRY, S. Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q 10: physico-chemical properties and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 147, 2016, p. 142-150.
SORIA, A.C. and VILLAMIEL, M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 2010, p. 323-331.
ZHAO, Y.Y., WANG, P., ZOU, Y.F., LI, K., KANG, Z.L., XU, X.L. and ZHOU, G.H. Effect of pre-emulsification of plant lipid treated by pulsed ultrasound on the functional properties of chicken breast myofibrillar protein composite gel. Food Research International, 58, 2014, p. 98-104.
HASHTJIN, A.M. and ABBASI, S. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions. Journal of food science and technology, 52(5), 2015, p. 2679-2689.
AKBAS, H.Z., AYDIN, Z., YILMAZ, O. and TURGUT, S. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO 3 ceramics. Ultrasonics Sonochemistry, 34, 2017, p. 873-880.
MARKOVIĆ, S., MITRIĆ, M., STARČEVIĆ, G. and USKOKOVIĆ, D. Ultrasonic de-agglomeration of barium titanate powder. Ultrasonics sonochemistry, 15(1), 2008, p. 16-20.
NGUYEN, N.H. and ANEMA, S.G. Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innovative Food Science & Emerging Technologies, 11(4), 2010, p. 616-622.
CHANDRAPALA, J. and LEONG, T. Ultrasonic processing for dairy applications: recent advances. Food Engineering Reviews, 7(2), 2015, p. 143-158.
SFAKIANAKIS, P., TOPAKAS, E. and TZIA, C. Comparative study on high-intensity ultrasound and pressure milk homogenization: Effect on the kinetics of yogurt fermentation process. Food and bioprocess technology, 8(3), 2015, p. 548-557.
GELVEZ, V.M., CAMPO, Y. y VILLADA, D. C. Efecto del ultrasonido en las propiedades físicas de la leche entera. Revista Bistua, 13, 2015, p. 79-90.
CHEMAT, F., ROMBAUT, N., SICAIRE, A.G., MEULLEMIESTRE, A., FABIANO-TIXIER, A.S. and ABERT-VIAN, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 2017, p. 540-560.
CHEMAT, F., ROMBAUT, N., FABIANO-TIXIER, A.S., PIERSON, J.T. and BILY, A. Green Extraction: From Concepts to Research, Education, and Economical Opportunities. Green Extraction of Natural Products: Theory and Practice, 2015, p. 1-36.
DRANCA, F. and OROIAN, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry, 31, 2016, p. 637-646.
AVHAD, D.N. and RATHOD, V.K. Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrasonics Sonochemistry, 22, 2015, p. 257-264.
CORBIN, C., FIDEL, T., LECLERC, E.A., BARAKZOY, E., SAGOT, N., FALGUIÉRES, A. and HANO, C. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26, 2015, p. 176-185.
KHAN, M., AHMAD, K. HASSAN, S. IMRAN, M. AHMAD, N. XU, C. Effect of novel technologies on polyphenols during food processing. Innovative Food Science and Emerging Technologies 45 (2018) 361–381
TIWARI, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 2015, p. 100-109.
MARAN, J.P. Statistical optimization of aqueous extraction of pectin from waste durian rinds. International Journal of Biological Macromolecules, 73, 2015, p. 92-98.
MARAN, J.P. and PRIYA, B. Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate Polymers, 115, 2015, p. 732-738.
ESPADA-BELLIDO, E., FERREIRO-GONZÁLEZ, M., CARRERA, C., PALMA, M., BARROSO, C.G. and BARBERO, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chemistry, 219, 2017, p. 23-32.
SANTOS, P., AGUIAR, A.C., BARBERO, G.F., REZENDE, C.A. and MARTÍNEZ, J. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrasonics Sonochemistry, 22, 2015, p. 78-88.
SETYANINGSIH, W., DUROS, E., PALMA, M. and BARROSO, C. Optimization of the ultrasound-assisted extraction of melatonin from red rice (Oryza sativa) grains through a response surface methodology. Applied Acoustics, 103, 2016, p. 129-135.
GOULA, A.M., THYMIATIS, K. and KADERIDES, K. Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food and Bioproducts Processing, 100, 2016, p.132-144.
ZHU, Z., GUAN, Q., KOUBAA, M., BARBA, F.J., ROOHINEJAD, S., CRAVOTTO, G. and HE, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry, 215, 2017, p. 391-400.
ZHU, Z., GUAN, Q., GUO, Y., HE, J., LIU, G., LI, S. and JAFFRIN, M.Y. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. International Agrophysics, 30(1), 2016, p. 113-122.
JIANG, H.L., YANG, J.L. and SHI, Y.P. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry, 34, 2017, p. 325-331.
JING, C.L., DONG, X.F. and TONG, J.M. Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from Alfalfa using response surface method. Molecules, 20(9), 2015, p. 15550-15571.
BARBA, F.J., GALANAKIS, C.M., ESTEVE, M.J., FRIGOLA, A. and VOROBIEV, E. Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. Journal of Food Engineering, 167, 2015, p. 38-44.
XU, D.P., ZHENG, J., ZHOU, Y., LI, Y., LI, S. and LI, H. B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chemistry, 217, 2017, p. 552-559.
YANG, R.F., GENG, L.L., LU, H.Q. and FAN, X.D. Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni. Ultrasonics Sonochemistry, 34, 2017, p. 571-579.
PRADAL, D., VAUCHEL, P., DECOSSIN, S., DHULSTER, P. and DIMITROV, K. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochemistry, 32, 2016, p. 137-146.
AL-DHABI, N.A., PONMURUGAN, K. and MARAN-JEGANATHAN, P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 2017, p. 206-213.
CAMPO, Y., VILLADA, D. y GELVEZ, V. Evaluación del efecto de pre-tratamiento con ultrasonido en la extracción de flavonoides contenidos en las cascaras de cítricos. Revista Vitae, 23, 2016, p. 95-99.
LINGZHU, L., LU, W., DONGYAN, C., JINGBO, L., SONGYI, L., HAIQING, Y. and YUAN, Y. Optimization of ultrasound-assisted extraction of polyphenols from maize filaments by response surface methodology and its identification. Journal of Applied Botany and Food Quality, 88, 2015, p. 152-163.
MOORTHY, I.G., MARAN, J.P., ILAKYA, S., ANITHA, S., SABARIMA, S.P. and PRIYA, B. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrasonics Sonochemistry, 34, 2017, p. 525-530.
CAMPO-VERA, Y., VILLADA-CASTILLO, D. C. y MENESES-ORTEGA, J.D. Efecto del pre-tratamiento con Ultrasonido en la extracción de Pectina contenida en el albedo Del maracuyá (Passiflora edulis). Revista Biotecnología en el Sector Agropecuario y Agroindustrial, 14(1), 2016, p. 103-109.
SANTACATALINA, J.V., CONTRERAS, M., SIMAL, S., CÁRCEL, J.A. and GARCIA-PEREZ, J.V. Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 2016, p. 100-109.
GARCIA-NOGUERA, J., OLIVEIRA, F.I., GALLÃO, M.I., WELLER, C.L., RODRIGUES, S. and FERNANDES, F.A. Ultrasound-assisted osmotic dehydration of strawberries: Effect of pretreatment time and ultrasonic frequency. Drying Technology, 28(2), 2010, p. 294-303.
GARCIA-PEREZ, J.V., ORTUÑO, C., PUIG, A., CARCEL, J.A. and PEREZ-MUNUERA, I. Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2012, p. 2256-2265.
GARCÍA-PÉREZ, J., CÁRCEL, J., RIERA, E. and MULET, A. Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27(2), 2009, p. 281-287.
MAJID, I., NAYIK, G.A. and NANDA, V. Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1), 2015, p. 1-11.
YAO, Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 2016, p. 512-531.
DO NASCIMENTO, E.M.G.C.M., ASCHERI, A., RAMÍREZ DE CARVALHO, J.L., WANDERLEI, C. and PILER CÁRCEL, J.A. Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 2016, p. 108-118.
CAMPO, Y., VILLADA, D. y GELVEZ, V. Efecto de la aplicación de ultrasonido sobre las cinéticas de secado convectivo de fresa (Fragaria vesca). Revista Vitae, 23, 2016, p. 100-104.
MUSIELAK, G., MIERZWA, D. and KROEHNKE, J. Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 2016, p. 126-141.
BARMAN, N. and BADWAIK, L.S. Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, 34, 2017, p. 37-44.
WIKTOR, A., SLEDZ, M., NOWACKA, M., RYBAK, K. and WITROWA-RAJCHERT, D. The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue. Applied Acoustics, 103, 2016, p. 136-142.
FERNANDES, F.A., GALLÃO, M.I. and RODRIGUES, S. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 2009, p. 186-190.
FERNANDES, F.A.N., GALLÃO, M.I. and RODRIGUES, S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 2008, p. 604-610.
PRINZIVALLI, C., BRAMBILLA, A., MAFFI, D., SCALZO, R. L. and TORREGGIANI, D. Effect of osmosis time on structure, texture and pectic composition of strawberry tissue. European Food Research and Technology, 224(1), 2006, p. 119-127.
KOWALSKI, S.J., PAWŁOWSKI, A., SZADZIŃSKA, J., ŁECHTAŃSKA, J. and STASIAK, M. High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 2016, p. 225-233.
GAMBOA-SANTOS, J., SORIA, A.C., PÉREZ-MATEOS, M., CARRASCO, J.A., MONTILLA, A. and VILLAMIEL, M. Vitamin C content and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chemistry, 136(2), 2013, p. 782-788.
GARCÍA-PÉREZ, J.V., OZUNA, C., ORTUÑO, C., CÁRCEL, J.A. and MULET, A. Modeling ultrasonically assisted convective drying of eggplant. Drying Technology, 29(13), 2011, p. 1499-1509.
KROEHNKE, J., MUSIELAK, G. and BORATYŃSKA, A. Convective drying of potato assisted by ultrasound. PhD Interdisciplinary Journal, 1, 2014, p. 57-65.
CHEN, Z.G., GUO, X.Y. and WU, T. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 2016, p. 28-34.
SLEDZ, M., WIKTOR, A., RYBAK, K., NOWACKA, M., & WITROWA-RAJCHERT, D. The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103, 2016, p. 148-156.
SZADZIŃSKA, J., ŁECHTAŃSKA, J., KOWALSKI, S.J. and STASIAK, M. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 2017, p. 531-539.
TAO, Y., WANG, P., WANG, Y., KADAM, S. U., HAN, Y., WANG, J. and ZHOU, J. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 2016, p. 310-318.
CORRÊA, J.L.G., RASIA, M.C., GARCIA-PEREZ, J.V., MULET, A., DE JESUS JUNQUEIRA, J.R. and CÁRCEL, J.A. Use of Ultrasound in the Distilled Water Pretreament and Convective Drying of Pineapple Drying and Energy Technologies, 2016, p. 71-87.
ANTENTAS, J.M. y VIVAS, E. Impacto de la crisis en el derecho a una alimentación sana y saludable. Informe SESPAS 2014. Gaceta sanitaria, 28, 2014, p. 58-61.
HUANG, H.W., WU, S.J., LU, J.K., SHYU, Y.T. and WANG, C.Y. Current status and future trends of high-pressure processing in food industry. Food Control, 72, 2017, p. 1-8.