Extração de lipídios da microalga Scenedesmus sp. Com diferentes mistura de solventes orgânicos

  • JOSÉ JOVANNY BERMUDEZ SIERRA Universidade Federal de Ceara.
Palabras clave: Ácidos grasos, Rompimiento celular, Microalgas, Constante Dieléctrica, Derivatización.

Resumen

Las microalgas son fuentes de lípidos con potencial en producir biocombustibles y suplementos alimentarios en gran escala. El presente estudio tiene como objetivo evaluar el papel de los solventes orgánicos apolares y próticos polares (proporción 1:2) en la extracción y cuantificación de lípidos totales y ésteres metílicos de ácidos grasos (FAMEs sigla en inglés) en la microalga Scenedesmus. sp. A las muestras liofilizadas fueron cuantificados los lípidos por Blight & Dyer (B&D) modificado y pre-tratadas con ácido clorhídrico 3 mol.L-1 (con y sin HCl). El cloroformo fue reemplazado por acetato de etilo, éter de petróleo y éter etílico, y el metanol por etanol, isopropanol y terc-butanol. Los FAMEs en los tratamientos, con o sin adición de HCl, fueron determinados por cromatografía de gases. Los resultados evidenciaron que la mayor extracción de lípidos y FAMEs con HCl en los tratamientos se explica por rompimiento de la celular y liberación de los lípidos. Los solventes orgánicos y los alcoholes mostraron una eficiencia adecuada en presencia de HCl, igualmente el éter de petróleo y etanol demostraron resultados similares con B&D utilizado como referencia. En conclusión, la combinación entre los solventes apolares e próticos polares aumentaron la extracción y los rendimientos, especialmente cuando el éter de petróleo o el éter etílico con etanol (HCl), proporcionando los FAMEs insaturados de lípidos neutros.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

JOSÉ JOVANNY BERMUDEZ SIERRA, Universidade Federal de Ceara.
Estudante pós-graduação Doutorado em Biotecnologia“RENORBIO”.

Citas

RAVINDRAN, B. at al. Recent Advances and Future Prospects of Microalgal Lipid Biotechnology, in: S.K.G. · A. Malik, Faizal Bux (Orgs.) Springer (Switzerland): 2017, p. 207–219, doi:10.1007/s11120-013-9828-z.

ALASWAD, A., DASSISTI, M., PRESCOTT, T. and OLABI, A.G. Technologies and developments of third generation biofuel production. Renewable Sustainable Energy Reviews, 51, 2015, p. 1446–1460, doi:10.1016/j.rser.2015.07.058.

NAVARRO, F. et al. Microalgae as a safe food source for animals: Nutritional characteristics of the acidophilic microalga Coccomyxa onubensis. Food and Nutrition Research, 60, 2016, doi:10.3402/fnr.v60.30472.

ECONOMOU, C.N. et al. Lipid production by the filamentous cyanobacterium Limnothrix sp. growing in synthetic wastewater in suspended -and attached- growth photobioreactor systems. Annals of Microbiology, 65, 2015, p. 1941–1948, doi:10.1007/s13213-014-1032-7.

SINGHASUWAN, S. et al. Carbon to nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. Journal of Biotechnology, 216, 2015, p. 169–177, doi:10.1016/j.jbiotec.2015.10.003.

JONES, Y. et al. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons : Whole Algae Hydrothermal Liquefaction and Upgrading. Richland, WA (US): 2014, doi:10.2172/1126336.

KIM, D.Y. et al. Oh, Cell-wall disruption and lipid / astaxanthin extraction from microalgae : Chlorella and Haematococcus. Bioresource Technology, 199, 2016, p. 300–310, doi:10.1016/j.biortech.2015.08.107.

BYREDDY, A.R. et al. Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Marine Drugs, 13, 2015, p. 5111–5127, doi:10.3390/md13085111.

ONAY, M. et al. Evaluation of Various Extraction Techniques for Efficient Lipid Recovery from Thermo-Resistant Microalgae, Hindakia, Scenedesmus and Micractinium Species. American Journal of Analytical Chemistry, 7, 2016, p. 141–150, doi:10.4236/ajac.2016.72012.

DEMIRBAS, A. Use of algae as biofuel sources. Energy Conversion and Management, 51, 2010, p. 2738–2749, doi:10.1016/j.enconman.2010.06.010.

ABOIM, J.B. et al. Determination of biodiesel properties based on a fatty acid profile of eight Amazon cyanobacterial strains grown in two different culture media. RSC Advances, 6, 2016, p. 109751–109758, doi:10.1039/C6RA23268J.

Farooq, W. et al. Energy efficient process for microalgae cell disruption for oil recovery using triiodide resin. Algal Research, 13, 2016, p. 102–108, doi:10.1016/j.algal.2015.11.007.

LAGE, S. and GENTILI, F.G. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods, Bioresource Technology, 257, 2018, p. 121–128, doi:10.1016/j.biortech.2018.01.153.

BREIL, C. et al. “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18, 2017, p. 1–21, doi:10.3390/ijms18040708.

GRIFFITHS, M.J., VAN HILLE, R.P. and HARRISON, S.T.L. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids, 45, 2010, p. 1053–60, doi:10.1007/s11745-010-3468-2.

LEE, J.Y. et al. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, Suppl 2010, p. S75-7, doi:10.1016/j.biortech.2009.03.058.

Wu, J. et al. Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 71, 2017, p. 323–329, doi:10.1016/j.jtice.2016.12.039.

ICHIHARA, K. et al. Fatty acid analysis of triacylglycerols: Preparation of fatty acid methyl esters for gas chromatography, Anal. Biochem. 495 (2016) 6–8. doi:10.1016/j.ab.2015.11.009.

XU, N. et al. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp (Eustigmatophyta). Journal of Applied Phycology, 13, 2001, p. 463–469.

ANGLES, E. et al. Wet lipid extraction from the microalga Nannochloropsis sp.: Disruption, physiological effects and solvent screening, Algal Research, 21, 2017, p. 27–34, doi:10.1016/j.algal.2016.11.005.

ARAUJO, G.S. et al. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrasonics Sonochemistry, 20, 2013, p. 95–8, doi:10.1016/j.ultsonch.2012.07.027.

AXELSSON, M. and GENTILI, F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS One, 9, 2014, p. 17–20, doi:10.1371/journal.pone.0089643.

IVERSON, S.J., LANG, S.L.C. and COOPER, M.H. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissue. Lipids, 36, 2001, p. 1283–1287.

SANTANA, A., FERRAZ, L. and MARISA, B. Extration Methods And Quality Of the Lipid Fraction Of Vegetable And Animal Samples. Quimica Nova, 32, 2009, p. 849–854.

ARCHANAA, S., MOISE, S. and SURAISHKUMAR, G.K. Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method. Biomass and Bioenergy, 46, 2012, p. 805–808, doi:10.1016/j.biombioe.2012.07.002.

LI, T. et al. A saponification method for chlorophyll removal from microalgae biomass as oil feedstock. Marine Drugs, 14, 2016, p. 1–19, doi:10.3390/md14090162.

MANIRAKIZA, P., COVACI, A. and SCHEPENS, P. Comparative Study on Total Lipid Determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. Journal of Food Composition and Analysis, 14, 2001, p. 93–100, doi:10.1006/jfca.2000.0972.

TALEBI, A.F. et al. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 2013, p. 258–267, doi:10.1016/j.algal.2013.04.003.

WHO/FAO. Diet, Nutrition and the Prevention of Chronic Disease. Geneva (Italia): 2003.

GUEDES, A.C. Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Research International, 44, 2011, p. 2721–2729, doi:10.1016/j.foodres.2011.05.020.

BAUMGARDT, F.J.L. et al. Lipid content and fatty acid profile of Nannochloropsis oculata before and after extraction with conventional solvents and/or compressed fluids. Journal of Supercritical Fluids, 108, 2016, p. 89–95, doi:10.1016/j.supflu.2015.11.003.

KNOTHE, G. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?. Green Chemistry, 13, 2011, p. 3048, doi:10.1039/c0gc00946f.

RUBIO-RODRÍGUEZ, N. et al. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innovative Food Science and Emerging Technologies, 11, 2010, p. 1–12, doi:10.1016/j.ifset.2009.10.006.

SOCCOL, C.R. et al. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study. Bioresource Technology, 223, 2017, p. 259–268, doi:10.1016/j.biortech.2016.10.055.

ISLAM, M.A. et al. Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel, 143, 2015, p. 351–360, doi:10.1016/j.fuel.2014.11.063.

Cómo citar
BERMUDEZ SIERRA, J. J. (2018). Extração de lipídios da microalga Scenedesmus sp. Com diferentes mistura de solventes orgânicos. Biotecnología En El Sector Agropecuario Y Agroindustrial, 16(2), 88-98. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1169
Publicado
2018-07-01
Sección
Artículos de Investigaciòn