Producción de butanol a partir de residuo lignocelulósico, enfoque de biorrefinería. Análisis bibliométrico

  • Deyanira Muñoz Muñoz Universidad del cauca
  • Jorge Enrique López Galán Universidad del Valle
Palabras clave: Biocombustible, Biomasa, Deficiencias, Documentación disponible, Visión Integral, Rendimientos, Concentraciones, Oportunidades, Ambiental, Energia

Resumen

El butanol, es un compuesto que tiene más ventajas energéticas que el etanol, con un mercado mundial que está alrededor de 4.2 (1012) US$/año (3 Mton/año), y una proyección de uso cada vez más creciente. Por esta razón, en el presente trabajo, bajo la estrategia de un análisis bibliométrico, se combinaron diferentes palabras claves relacionadas con el butanol, para generar una visión integral de los aspectos investigativos determinantes. Las bases de datos utilizadas, fueron las disponibles en las plataformas de Scopus y Web of Science, relacionada con el butanol en el VOSViewer durante el periodo 1984 a 2020 y el primer semestre de 2021.  Se encontró que la producción de butanol a partir de material lignocelulósico, no muestra aún buenos rendimientos e intensificación de procesos, para un concepto de biorrefinería económica y ambientalmente aceptable. Un cuello de botella, son las deficiencias en la fermentación, por la falta de microorganismos más productores y tolerantes a altas concentraciones de butanol.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

AITKEN, K.; LI, J.; PIPERIDIS, G.; QING, C.; YUANHONG, F.; JACKSON, P. Worldwide genetic diversity of the wild species Saccharum spontaneum and level of diversity captured within sugarcane breeding programs. Crop Science, v. 58, n.1, 2018, p. 218–229.https://doi.org/10.2135/cropsci2017.06.0339

ARAGÓN, M.; ROMERO, D.; LÓPEZ, J.E. Tesis ingeniero químico. Producción de n-butanol a

partir de la fermentación de biomasa residual (glicerol e hidrolizados de caña de azúcar),

utilizando la bacteria Clostridium pasteurianum. Cali (Colombia): Universidad del Valle, 2018.

ARAKAKI, R.M.; HENN, C.; MONTEIRO, D.A.; BOSCOLO, M.; DA SILVA, R.; GOMES, E. Degradation of the organochlorinated herbicide diuron by rainforest basidiomycetes. BioMed Research International, 2020.https://doi.org/10.1007/s42360-021-00391-7

COLOMBIA. ASOCIACIÓN DE CULTIVADORES DE CAÑA DE AZÚCAR (ASOCAÑA). InformeAnual 2018 – 2019. Impacto socioeconómico de la actividad

agroindustrial.D0CA1EED00FF00,000A000,87878,C3C3C3,0F0F0F,B4B4B4,FF00FF,2D2D2D,A3C4B5.pdf

https://ethanolrfa.org/wp-content/uploads/2019/02/RFA2019PocketGuide.pdf.

BAKSI, S.; SAHA, S.; BIRGEN, C.; SARKAR, U.; PREISIG, H. A.; MARKUSSEN, S.; WITTGENS, B.; WENTZEL, A.. Valorization of Lignocellulosic Waste (Crotalaria juncea) Using Alkaline Peroxide Pretreatment under Different Process Conditions: An Optimization Study on Separation of Lignin, Cellulose, and Hemicellulose. Journal of Natural Fibers, v. 16, n. 5, 2019, p. 662–676.https://doi.org/10.1080/15440478.2018.1431998

BAKSI, S.; SARKAR, U.; SAHA, S.; BALL, A.K.; CHANDRA KUNIYAL, J.; WENTZEL, A.; BIRGEN, C.; PREISIG, H.A.; WITTGENS, B.; MARKUSSEN, S. Studies on delignification and inhibitory enzyme kinetics of alkaline peroxide pre-treated pine and deodar saw dust. Chemical Engineering and Processing - Process Intensification, 2019, p. 143.https://doi.org/10.1016/j.cep.2019.107607

BARAL, N.R.; SHAH, A. Techno-Economic Analysis of Cellulosic Butanol Production from Corn Stover through Acetone-Butanol-Ethanol Fermentation. Energy and Fuels, v. 30, n. 7, 2018, p. 5779–5790.https://doi.org/10.1021/acs.energyfuels.6b00819

BARAL, N.R.; ASHER, Z.D.; TRINKO, D.; SPROUL, E.; QUIROZ-ARITA, C.; QUINN, J.C.; BRADLEY, T.H. Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy. Journal of Cleaner Production, V. 279, 2021, 123593. https://doi.org/10.1016/j.jclepro.2020.123593

BELLETANTE, S.; MONTASTRUC, L.; MEYER, M.; HERMANSYAH, H.; NEGNY, S. Multiproduct biore fi nery optimal design: application to the acetone-butanol-ethanol system, v. 9, 2020.

BENNAMOUN, L.; SIMO-TAGNE, M.; NDUKWU, M.C. Simulation of storage conditions of mixed biomass pellets for bioenergy generation: Study of the thermodynamic properties. Energies, v.13, n.10, 2020.https://doi.org/10.3390/en13102544

BHARATHIRAJA, B.; JAYAMUTHUNAGAI, J.; SUDHARSANAA, T.; BHARGHAVI, A.; PRAVEENKUMAR, R.; CHAKRAVARTHY, M.; DEVARAJAN, Y. Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. In Renewable and Sustainable Energy Reviews, v. 68, 2017, p. 788–807.https://doi.org/10.1016/j.rser.2016.10.017

BHATIA, S.K.; JAGTAP, S.S.; BEDEKAR, A.A.; BHATIA, R.K.; PATEL, A.K.; PANT, D.; RAJESH-BANU, J.; RAO, C.V.; KIM, Y.G.; YANG, Y.H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. In Bioresource Technology, v. 300, 2020.https://doi.org/10.1016/j.biotech.2019.122724

BONOMI, A.; KLEIN, B. C.; CHAGAS, M.F.; JUNQUEIRA, T.L.; REZENDE, M.C.A.F.; DE FÁTIMA-CARDOSO, T.; CAVALETT, O. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, v. 209, 2018, p. 290-305.

BRANDT, S. C.; BROGNARO, H.; ALI, A.; ELLINGER, B.; MAIBACH, K.; RÜHL, M.; WRENGER, C.; SCHLÜTER, H.; SCHÄFER, W.; BETZEL, C.; JANSSEN, S.; GAND, M. Insights into the genome and secretome of Fusarium metavorans DSM105788 by cultivation on agro-residual biomass and synthetic nutrient sources. Biotechnology for Biofuels, v. 14, n. 1, 2021, p. 1–22. https://doi.org/10.1186/s13068-021-01927-9

CALLEGARI, A.; BOLOGNESI, S.; CECCONET, D.; CAPODAGLIO, A.G. Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Critical Reviews in Environmental Science and Technology, v. 50, n. 4, 2020, p. 384–436. https://doi.org/10.1080/10643389.2019.1629801

CARMONA-GARCIA, E.; ORTIZ-SÁNCHEZ, M.; CARDONA ALZATE, C.A. Analysis of the Coffee Cut Stems as Raw Material for the Production of Sugars for Acetone–Butanol–Ethanol (ABE) Fermentation: Techno-Economic Analysis. Waste and Biomass Valorization, v.10, n. 12, 2019, p. 3793–3808.https://doi.org/10.1007/s12649-019-00632-x

CHENG, C.; LI, W.; LIN, M.; YANG, S.T. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresource Technology, v. 284, 2019, p. 415–423.https://doi.org/10.1016/j.biortech.2019.03.145

CIMINO, S.; LISI, L.; ROMANUCCI, S. Catalysts for conversion of ethanol to butanol: Effect of acid-base and redox properties. Catalysis Today, v. 304, 2018, p. 58–63. https://doi.org/10.1016/j.cattod.2017.08.035

COMSTOCK, J.C.; LIN, Z.; XU, S.; QUE, Y.; WANG, J.; WEI, J.; ZHANG, M. Species-specific detection and identification of Fusarium species complex, the causal agent of sugarcane pokkah boeng in China. PloS one, v. 9, n. 8, 2014, e104195.

DA SILVA-TRINDADE, W.R.; DOS SANTOS, R.G. 1D modeling of SI engine using n-butanol as fuel: Adjust of fuel properties and comparison between measurements and simulation. Energy Conversion and Management, v. 157, 2018 p. 224–238.https://doi.org/10.1016/j.enconman.2017.12.003

DABROCK, B.; BAHL, H.; GOTTSCHALK, G. Parameters affecting solvent production by Clostridium pasteurianum. Applied and Environmental Microbiology, v. 58, n. 4, 1992, p. 1233–1239. https://doi.org/10.1128/aem.58.4.1233-1239.1992

DE MELLO, F.; DA, S.B.; CORADINI, A.L.V.; TIZEI, P.A.G.; CARAZZOLLE, M.F.; PEREIRA, G.A.G.; TEIXEIRA, G.S. Static microplate fermentation and automated growth analysis approaches identified a highly-aldehyde resistant Saccharomyces cerevisiae strain. Biomass and Bioenergy, v. 120, 2018, p. 49–58.https://doi.org/10.1016/j.biombioe.2018.10.019

DEVASIA, D.; WILSON, A.J.; HEO, J.; MOHAN, V.; JAIN, P.K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nature Communications, v. 12, n. 1, 2021, p. 1–10.https://doi.org/10.1038/s41467-021-22868-9

DIAS, M.O.S.; BARBOSA, F.C.; NOGUEIRA, G.P.; KENDRICK, E.; FRANCO, T.T.; LEAK, D.; CAVALIERO, C.K.N.; GOLDBECK, R. Production of cello-oligosaccharides through the biorefinery concept: A technical-economic and life-cycle assessment. Biofuels, Bioproducts and Biorefining, v. 15, n. 6, 2021, p. 1763–1774.https://doi.org/10.1002/bbb.2276

DURAN PADILLA, R.V. Producción de Biobutanol a partir de suero de quesería usando una cepa mutante de Clostridium acetobutylicum, v. 230, 2015.

DÜRRE, P. Fermentative production of butanol-the academic perspective. In Current Opinion in Biotechnology, v. 22, n. 3, 2011, p. 331–336. https://doi.org/10.1016/j.copbio.2011.04.010

FARZAD, S.; MANDEGARI, M.A.; GUO, M.; HAIGH, K.F.; SHAH, N.; GÖRGENS, J.F. Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnology for Biofuels, v. 10, n. 1, 2017.https://doi.org/10.1186/s13068-017-0761-9

FENG, Y.; ZHAO, Y.; GUO, Y.; LIU, S. Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia. Water Research, v. 128, 2018, p. 402–411.https://doi.org/10.1016/j.watres.2017.10.069

FERRARI, M.D.; ROCHÓN, E.; CORTIZO, G.; CABOT, M.I.; GARCÍA-CUBERO, M.T.; COCA, M.; LAREO, C. Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel, v. 281, 2020, p. 118593.https://doi.org/10.1016/j.fuel.2020.118593

FLAIZ, M.; LUDWIG, G.; BENGELSDORF, F.R.; DÜRRE, P. Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum. Biotechnology for Biofuels, v. 14, n. 1, 2021, p. 1–20. https://doi.org/10.1186/s13068-021-01966-2

FURTADO-JÚNIOR, J.C.; PALACIO, J.C.E.; LEME, R.C.; LORA, E.E.S.; DA COSTA, J.E L.; REYES, A.M.M.; DEL OLMO, O.A. Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry. Applied Energy, v. 259, 2020. https://doi.org/10.1016/j.apenergy.2019.04.088

GARCÍA, V.; PÄKKILÄ, J.; OJAMO, H.; MUURINEN, E.; KEISKI, R. L. Challenges in biobutanol production: How to improve the efficiency?. Renewable and Sustainable Energy Reviews, v. 15, n. 2, 2011, p. 964–980.https://doi.org/10.1016/j.rser.2010.11.008

GINNI, G.; KAVITHA, S.; YUKESH-KANNAH, R.; BHATIA, S.K.; ADISH-KUMAR, S.; RAJKUMAR, M.; KUMAR, G.; PUGAZHENDHI, A.; CHI, N.T.L.; RAJESH-BANU, J. Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, v. 9, n. 4, 2021, p. 105435.https://doi.org/10.1016/j.jece.2021.105435

GOELZER, A.; FROMION, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochimica et Biophysica Acta - General Subjects, v. 1810, n. 10, 2011, p. 978–988.https://doi.org/10.1016/j.bbagen.2011.05.014

GROEGER, C.; WANG, W.; SABRA, W.; UTESCH, T.; ZENG, A.P. Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability. Microbial Cell Factories, v. 16, n. 1, 2017. https://doi.org/10.1186/s12934-017-0678-9

HAO, J.; XIAO, J.; SONG, G.; ZHANG, Q. Energy and exergy analysis of bio-jet fuel production from lignocellulosic biomass via aqueous conversion. Case Studies in Thermal Engineering, v. 26, n. 1, 2021, p. 101006.https://doi.org/10.1016/j.csite.2021.101006

HOANG, A.T.; ÖLÇER, A.I.; NIŽETIĆ, S. Prospective review on the application of biofuel 2,5-dimethylfuran to diesel engine. Journal of the Energy Institute, v. 94, 2021, p. 360–386. https://doi.org/10.1016/j.joei.2020.10.004

IBRAHIM, M.F.; RAMLI, N.; KAMAL_BAHRIN, E.; ABD-AZIZ, S. Cellulosic biobutanol by Clostridia: Challenges and improvements. Renewable and Sustainable Energy Reviews, v. 79, 2017, p. 1241–1254.https://doi.org/10.1016/j.rser.2017.05.184

KUMAR, M.; GAYEN, K. Developments in biobutanol production: New insights. Applied Energy, v. 88, n. 6, 2011, p. 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055

KUMAR, R.S.; SINGH, P.; GHOSH, S. Sequential fermentation for enhanced volumetric productivity of bioethanol from mixed sugars. Fuel, v. 308, n. 2, 2021, p. 121984.https://doi.org/10.1016/j.fuel.2021.121984

LAREO, C.; FERRARI, M.D.; CEBREIROS, F. Cellulose hydrolysis and IBE fermentation of eucalyptus sawdust for enhanced biobutanol production by Clostridium beijerinckii DSM 6423. Industrial Crops and Products, v. 134, n. 1, 2019, p. 50–61. https://doi.org/10.1016/j.indcrop.2019.03.059

LEE, S.Y.; PARK, J.H.; JANG, S.H.; NIELSEN, L.K.; KIM, J.; JUNG, K.S. Fermentative butanol production by clostridia. Biotechnology and Bioengineering, v. 101, n. 2, 2008, p. 209–228. https://doi.org/10.1002/bit.22003

LI, Y., ZHAO, Y.; ISHAK, S. ET AL. An anonymous data reporting strategy with ensuring incentives for mobile crowd-sensing. Journal of Ambient Intelligence and Humanized Computing, v. 9, 2018, p. 2093–210.7 https://doi-org.bd.univalle.edu.co/10.1007/s12652-017-0529-x

LIBERATO, V.; BENEVENUTI, C.; COELHO, F.; BOTELHO, A.; AMARAL, P.; PEREIRA, N.; FERREIRA, T. Clostridium sp. As bio-catalyst for fuels and chemicals production in a biorefinery context. Catalysts, v. 9, n. 11, 2019.https://doi.org/10.3390/catal9110962

LI, X.Y.; ZHANG, R.; CEN, X.L.; GAO, Q.H.; ZHANG, M.; LI, K.Y.; WU, Q.; MU, Y L.; TANG, X.H.; ZHOU, J.P.; HUANG, Z.X. Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity. Electronic Journal of Biotechnology, v. 49, 2021, p. 64–71.https://doi.org/10.1016/j.ejbt.2020.11.001

LIM, J.; BYUN, H.E.; KIM, B.; LEE, J.H. Dynamic Modeling of Acetone-Butanol-Ethanol Fermentation with ex Situ Butanol Recovery using Glucose/Xylose Mixtures. Industrial and Engineering Chemistry Research, v. 59, n. 6, 2020, p. 2581–2592.https://doi.org/10.1021/acs.iecr.9b03016

LING, T.; ERIC. C.D.T.; ROBERT, M.; MIN, Z. Life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Alliance for Sustainable Energy, LLC. Biofuels, Bioproducts and Biorefining, 2013.

LIPOVSKY, J.; PATAKOVA, P.; PAULOVA, L.; POKORNY, T.; RYCHTERA, M.; MELZOCH, K. Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Processing Technology, v. 144, 2016, p. 139–144.https://doi.org/10.1016/j.fuproc.2015.12.020

LOZANO-PARADA, J.H.; BURNHAM, H.; MACHUCA-MARTINEZ, F. Pedagogical Approach to the Modeling and Simulation of Oscillating Chemical Systems with Modern Software: The Brusselator Model. Journal of Chemical Education, v. 95, n. 5, 2018, p. 758–766.https://doi.org/10.1021/acs.jchemed.7b00703

LU, A.; ZHANG, C.; JI, P.; LI, Y. Effect of gasoline additive on combustion and emission characteristics of an n-butanol Partially Premixed Compression Ignition engine under different parameters. Scientific Reports, v. 11, n. 1, 2021, p. 1–19.https://doi.org/10.1038/s41598-021-81490-3

MACIEL, M.R.W.; BONHIVERS, J.C.; REDDICK, C.; ZEMP, R.; MARIANO, A.P.; FILHO, R.M.The E-S-T Method Based on the Grand Composite Curve Links Energy Consumption with Number of Stages and Stage Temperatures for Binary Mixture Distillation. Process Integration and Optimization for Sustainability, v. 5, n. 4, 2021, p. 919–946.https://doi.org/10.1007/s41660-021-00189-0

MAGALHÃES, B.L.; GRASSI, M.C.B.; PEREIRA, G.A.G.; BROCCHI, M. Improved n-butanol production from lignocellulosic hydrolysate by Clostridium strain screening and culture-medium optimization. Biomass and Bioenergy, v. 108, n. 2, 2018, p. 157–166.https://doi.org/10.1016/j.biombioe.2017.10.044

MANDEGARI, M.; FARZAD, S.; GÖRGENS, J.F. A new insight into sugarcane biorefineries with fossil fuel co-combustion: Techno-economic analysis and life cycle assessment. Energy Conversion and Management, v. 165, 2018, p. 76–91. https://doi.org/10.1016/j.enconman.2018.03.057

MARIANO, A.P.; DIAS, M.O.S.; JUNQUEIRA, T.L.; CUNHA, M.P.; BONOMI, A.; FILHO, R.M. Butanol production in a first-generation Brazilian sugarcane biorefinery: Technical aspects and economics of greenfield projects. Bioresource Technology, v. 135, 2013, p. 316–323.https://doi.org/10.1016/j.biortech.2012.09.109

MARTINEZ, B.S.. Nuevo panorama de la ciencia, tecnología y la innovación. Bogotá (Colombia): 1 ed, Universidad EAN Ediciones, ISBN e9789587566536 660 CDD23, 2020.

MARZOCCHELLA, A.; PROCENTESE, A.; RUSSO, M.E.; DI SOMMA, I. Kinetic Characterization of Enzymatic Hydrolysis of Apple Pomace as Feedstock for a Sugar-Based biorefinery. Energies, v. 13, n. 5, 2020, p. 1051.

MERAMO-HURTADO, S.I.; SANCHEZ-TUIRAN, E.; PONCE-ORTEGA, J.M.; EL-HALWAGI, M.M.; OJEDA-DELGADO, K.A. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega, v. 5, n. 16, 2020, p. 9259–9275.https://doi.org/10.1021/acsomega.0c00114

MICHAILOS, S.; PARKER, D.; WEBB, C. A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. Biomass and Bioenergy, v. 95, 2016, p. 436–448.https://doi.org/10.1016/j.biombioe.2016.06.019

MORAL-MUÑOZ, J.A.; HERRERA-VIEDMA, E.; SANTISTEBAN-ESPEJO, A.; COBO, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de La Informacion, v. 29, n. 1, 2020, p. 1–20.https://doi.org/10.3145/epi.2020.ene.03

NANDA, S.; RANA, R.; ZHENG, Y.; KOZINSKI, J.A.; DALAI, A.K. Insights on pathways for hydrogen generation from ethanol. Royal Society of Chemistry. Sustainable Energy and Fuels, v. 1, n. 6, 2017, p. 1232–1245).https://doi.org/10.1039/C7SE00212B

NIEMISTÖ, J.; SAAVALAINEN, P.; ISOMÄKI, R.; KOLLI, T.; HUUHTANEN, M.; KEISKI, R.L. Biobutanol Production from Biomass. Berlin (Alemania): Gupta V., Tuohy M. (eds) Biofuel Technologies, 2013. https://doi-org.bd.univalle.edu.co/10.1007/978-3-642-34519-7_17

PEREIRA, L.G.; DIAS, M.O.S.; JUNQUEIRA, T.L.; PAVANELLO, L.G.; CHAGAS, M.F.; CAVALETT, O.; MACIEL-FILHO, R.; BONOMI, A. Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, v. 92, n. 8, 2014, p. 1452–1462. https://doi.org/10.1016/j.cherd.2014.04.032

PRATTO, B.; CHANDGUDE, V.; DE SOUSA, R.; CRUZ, A.J.G.; BANKAR, S. Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation. Industrial Crops and Products, v. 148, 2020. https://doi.org/10.1016/j.indcrop.2020.112265

PYNE, M.E.; LIU, X.; MOO-YOUNG, M.; CHUNG, D.A.; CHOU, C.P. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. Scientific Reports, v. 6, 2016.https://doi.org/10.1038/srep26228

QUE, YOU-XIONG; WANG, ZHOU-TAO; YOU, QIAN; GAO, SHI-WU; WANG, CHUN-FENG ; LI, ZHU; MA, JING-JING ; XU, LI-PING; LUO, JUN. Identification of Sugarcane Varieties by AFLP and SSR Markers and Its Application. Acta Agronomica Sinica Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian) Fujian (China): Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, v. 44, n. 5, 2018, p .723-736.https://doi.org/10.3724/SP.J.1006.2018.00723

RAJESH-KUMAR, B.; SARAVANAN, S. Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews, v. 60, 2016, p. 84–115. https://doi.org/10.1016/j.rser.2016.01.085

SABRA, W.; WANG, W.; SURANDRAM, S.; GROEGER, C.; ZENG, A.P. Fermentation of mixed substrates by Clostridium pasteurianum and its physiological, metabolic and proteomic characterizations. Microbial Cell Factories, v. 15, n. 1, 2016.https://doi.org/10.1186/s12934-016-0497-4

SAINI, J.K.; GUPTA, R.; HEMANSI, VERMA A.; GAUR, P.; SAINI, R.; SHUKLA, R.; KUHAD, R. C. Integrated Lignocellulosic Biorefinery for Sustainable Bio-Based Economy, 2019. https://doi.org/10.1007/978-3-319-94797-6_2

SAINI, J K.; SAINI, R.; TEWARI, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, v. 5, n. 4, 2015, p. 337–353.https://doi.org/10.1007/s13205-014-0246-5

SARATHY, S.M.; FAROOQ, A.; KALGHATGI, G.T. Recent progress in gasoline surrogate fuels. Progress in Energy and Combustion Science, v. 65, 2018, p. 67–108.https://doi.org/10.1016/j.pecs.2017.09.004

SHIBATA, Y.; TANAKA, K.; ASAKUMA, Y.; NGUYEN, C.V; HOANG, S.A.; PHAN, C.M. Selective evaporation of a butanol/water droplet by microwave irradiation, a step toward economizing biobutanol production. Biofuel Research Journal, v. 7, n. 1, 2020, p. 1109–1114.https://doi.org/10.18331/brj2020.7.1.3

SILVA-LORA, E.E.; ESCOBAR-PALACIOS, J.C.; VARGAS-NUNCIRA, D.L. Evaluación energética de la integración del proceso de obtención de biobutanol en una destilería autónoma. ICIDCA : Sobre Los Derivados de La Caña de Azúcar, v. 49, n. 3, 2015, p. 47–50.

SINGH, S.; SITHOLE, B.; LEKHA, P.; PERMAUL, K.; GOVINDEN, R.. Pretreatment and enzymatic saccharification of sludge from a prehydrolysis kraft and kraft pulping mill. Journal of Wood Chemistry and Technology, v. 41, n. 1, 2020, p. 10–24. https://doi.org/10.1080/02773813.2020.1856880

SINUMVAYO, J.P.; ZHAO, C.; LIU, G.; LI, Y.; ZHANG, Y. One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” E. coli consortium. Bioresources and Bioprocessing, v. 8, n. 1, 2021.https://doi.org/10.1186/s40643-021-00372-8

SUN, R.; HONG, S.; SHEN, X.J.; PANG, B.; XUE, Z.; CAO, X.F.; WEN, J.L. In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green chemistry, v. 22, n. 6, 2020, p. 1851-1858.

TRINDADE, W.R.; DA, S.; SANTOS, R.G. DOS. Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renewable and Sustainable Energy Reviews, v. 69, 2017, p. 642–65.https://doi.org/10.1016/j.rser.2016.11.213

VERA-GUTIÉRREZ, T.; GARCÍA-MUÑOZ, M.C.; OTÁLVARO-ALVAREZ, A.M.; MENDIETA-MENJURA, O. Effect of processing technology and sugarcane varieties on the quality properties of unrefined non-centrifugal sugar. Heliyon, v. 5, n. 10, 2019. https://doi.org/10.1016/j.heliyon.2019.e02667

VISWANATHAN, R. Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. Indian Phytopathology, v. 74, n. 3, 2021, p. 573–586. https://doi.org/10.1007/s42360-021-00391-7

WAGEMANN, K.; TIPPKÖTTER, N. Biorefineries: A short introduction. Advances in Biochemical Engineering/Biotechnology, v. 166, 2019, p. 1–11.https://doi.org/10.1007/10_2017_4

WANG, H.; WANG, X.; LI, Y.; ZHANG, S.; LI, Z.; LI, Y.; CUI, J.; LAN, X.; ZHANG, E.; YUAN, L.; JIN, D.Q.; TUERHONG, M.; ABUDUKEREMU, M.; XU, J.; GUO, Y. Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata. Carbohydrate Polymers, v. 256, n. 2 2021, p. 117521.https://doi.org/10.1016/j.carbpol.2020.117521

WU, J.; ELLISTON, A.; LE GALL, G.; COLQUHOUN, I.J.; COLLINS, S.R.A.; WOOD, I.P.; DICKS, J.; ROBERTS, I.N.; WALDRON, K.W. Optimising conditions for bioethanol production from rice husk and rice straw: Effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, v. 11, n. 1, 2018.https://doi.org/10.1186/s13068-018-1062-7

XIA, J.; SHU, J.; YAO, K.; XU, J.; YU, X.; XUE, X.; MA, D.; LIN, X. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues. Preparative Biochemistry and Biotechnology, v. 50, n. 2, 2020, p. 181–190. https://doi.org/10.1080/10826068.2019.1680390

XU, N.; YE, C.; CHEN, X.; LIU, J.; LIU, L. Genome-scale metabolic modelling common cofactors metabolism in microorganisms. Journal of Biotechnology, v. 251, 2017, p. 1–13.https://doi.org/10.1016/j.jbiotec.2017.04.004

XUE, C.; LIU, F.; XU, M.; TANG, I. C.; ZHAO, J.; BAI, F.; YANG, S.T. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresource Technology, v. 219, 2016, p. 158–168.https://doi.org/10.1016/j.biortech.2016.07.111

YANG, S.T; DU, Y.; BAO, T.; LIN, M.; WANG;. HUANG, J. Production of n-butanol from cassava

bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis. Bioresource Technology, v. 292, 2019. https://doi.org/10.1016/j.biortech.2019.121969

YASNITSKY, L.N.; GLADKIY, S.L. New possibilities of application of artificial intelligence methods for high-precision solution of boundary value problems. Mathematics and Statistics, v. 8, n. 3, 2020, p. 23–333.https://doi.org/10.13189/ms.2020.080311

ZHANG, J.; GAO, M.; HUA, D.; LI, Y.; XU, H.; LIANG, X.; ZHAO, Y.; JIN, F.; CHEN, L.; MENG, G.; SI, H.; ZHANG, X. Butanol production of Clostridium pasteurianum SE-5 from transesterification reaction solution using fermentation and extraction coupling system. ICMREE 2013 - Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment, v. 1, 2013, p. 174–178.https://doi.org/10.1109/ICMREE.2013.6893641

ZHENG, J.; TASHIRO, Y.; WANG, Q.; SONOMOTO, K. Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. In Journal of Bioscience and Bioengineering. Elsevier, v. 119, n. 1, 2015, p. 1–9.https://doi.org/10.1016/j.jbiosc.2014.05.023

Cómo citar
Muñoz Muñoz, D., & López Galán , J. E. . (2022). Producción de butanol a partir de residuo lignocelulósico, enfoque de biorrefinería. Análisis bibliométrico. Biotecnología En El Sector Agropecuario Y Agroindustrial, 22(1), 87–104. https://doi.org/10.18684/rbsaa.v22.n1.2024.2023
Publicado
2022-08-23
Sección
Artículos de Investigaciòn
QR Code

Algunos artículos similares: