Cama de aves de corral un factor importante en la seguridad alimentaria

  • Maria Alejandra Ospina Barrero Magister
  • Anderlise Borsoi Phd
  • Lina María Peñuela Sierra Phd
  • Maryeimy Varón López
Palabras clave: Agricultura, Antimicrobianos, Avicultura, Cama de aves, Desechos avícolas, Fertilizante, Gallinaza, Patógenos, Pollinaza, Seguridad alimentaria

Resumen

La cama es un componente esencial en la producción de aves de corral, ya que habitan sobre este material la mayor parte de su ciclo productivo, por consiguiente, en ella se puede encontrar heces, bacterias entéricas, patógenos de importancia zoonótica y/o de transmisión alimentaria, plaguicidas y antimicrobianos, los cuales pueden afectar la sanidad de las aves. Después del ciclo de producción avícola, la cama es comúnmente utilizada como fertilizante orgánico para mejorar la calidad de los suelos y los cultivos. A pesar de su amplio uso en la avicultura y agricultura, se conoce poco acerca de su importancia en la seguridad alimentaria, por lo cual, la presente revisión discute acerca de los patógenos y contaminantes presentes en la cama y sus riesgos para la seguridad alimentaria, además las prácticas de manejo y tratamientos más adecuados. Información que será útil para maximizar los usos de la cama y los desechos avícolas, para que estos no representen un peligro para las personas, animales y el medio ambiente. 

 

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

1. FEDERACIÓN NACIONAL DE AVICULTORES. Balance avicola 2018 y expectativas 2019. Boletín fenaviquín número 278. Fecha de consulta: 3 de enero del 2020. Disponible en: https://fenavi.org/wpcontent/uploads/2018/12/Fenaviquin_ed2772018-2.pdf
2. DUNLOP, MW., BLACKALL, PJ. and STUETZ, R.M. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials. J. Environ. Manage. 2016; 177: 306–319. https://doi.org/10.1016/j.jenvman.2016.04.009
3. HAHN, L. et al. Persistência de patógenos e do antibiótico salino-. Arch. Zootec. 2012; 61: 279–285.
4. MESA, D., SOUZA, A.M. and SANTIN M.V. Presence of Salmonella spp. in reused broiler litter. Rev Colomb Cienc Pec. 2014; 27: 12.
5. MPUNDU, P. et al. Evaluation of bacterial Contamination in dressed Chickens at Lusaka Abattoirs. Frontiers in public health. 2019; 7: 19.
6. DOYLE, M.P. and ERICKSON, M.C. Summer meeting 2007–the problems with fresh produce: an overview. J. Appl. Microbiol. 2008; 105: 317-330.
7. ERICKSON, M.C. and DOYLE M.P. Plant food safety issues: linking production agriculture with One Health. En Improving Food Safety Through a One Health Approach: Workshop Summary. Washington (DC): National Academies Press (US); 2012. p 140 –175
8. HUANG, J. et al. Campylobacter spp. in chicken-slaughtering operations: A risk assessment of human campylobacteriosis in East China. Food Control. 2018; 86: 249-256.
9. KAGAMBÈGA, A. et al. Salmonella spp. and Campylobacter spp. in poultry feces and carcasses in Ouagadougou, Burkina Faso. Food Sci Nutr . 2018; 6: 1601-1606.
10. WAGENAAR, JA. et al. Poultry colonization with Campylobacter and its control at the primary production level. En: Nachamkin I, editor Szymanski CM, editor; Blaser MJ. Campylobacter. 3rd edition, Washington: 2008. p. 667–678.
11. CASTAÑEDA-SALAZAR, R. et al. Estimación de la prevalencia de Salmonella spp. en pechugas de pollo para consumo humano provenientes de cuatro localidades de Bogotá-Colombia. Infectio. 2018; 23: 27-32.
12. BOLAN, N.S. et al. Uses and management of poultry litter. Worlds Poult Sci J. 2010; 66: 673–698. https://doi.org/10.1017/S0043933910000656
13. FURTULA, V. et al. Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci. 2010; 89: 180–188. https://doi.org/10.3382/ps.2009-00198
14. GARCÊS, A. et al. Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics. Trop Anim Health Prod. 2013; 49, 369–374. https://doi.org/10.1007/s11250-016-1202-7
15. WANG, L., LILBURN, M. and Y.U. Z. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front. Microbiol. 2016;7: 1–12. https://doi.org/10.3389/fmicb.2016.00593
16. CRESSMAN, M.D. et al. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl Environ Microbiol . 2010; 76: 6572–6582. https://doi.org/10.1128/AEM.00180-10
17. STOJČIĆ, MD. et al. Effect of straw size and microbial amendment of litter on certain litter quality parameters, ammonia emission, and footpad dermatitis in broilers. Arch. Anim. Breed. 2016; 59: 131–137. https://doi.org/10.5194/aab-59-131-2016
18. VAN, HARN. et al. Effect of bedding material on dust and ammonia emission from broiler houses. T ASABE. 2012; 8: 304–308.
19. FIORENTIN, L. Reutilização da cama na criação de frangos e as implicações de ordem bacteriológica na saúde humana e animal. Concórdia: Embrapa suínos e Aves; 2005. p.23.
20. WILLIAMS, C.M. Gestión de residuos de aves de corral en los países en desarrollo. En: FAO (ed). Revisión del desarrollo avícola. Roma, Italia; 2013. p. 48.
21. POTE, DH. et al. Subsurface Application of Dry Poultry Litter: Impacts on Common Bermudagrass and Other No-Till Crops. J. Agric. Sci. 2012; 4: 55–62. https://doi.org/10.5539/jas.v4n4p55
22. WATTS, D.B., WAY, T.R. and TORBERT H.A. Subsurface Application of Poultry Litter and Its Influence on Nutrient Losses in Runoff Water from Permanent Pastures. J. Environ. Qual. 2011; 40: 421. https://doi.org/10.2134/jeq2010.0089
23. BUENO, D.J, LÓPEZ, N, RODRIGUEZ, F.I. and PROCURA, F. Producción de pollos parrilleros en países sudamericanos y planes sanitarios nacionales para el control de Salmonella en dichos animales. Rev. agron. noroeste arg. 2016; 36: 11–37.
24. CHINIVASAGAM, H.N. et al. Presence and incidence of food-borne pathogens in australian chicken litter. Br. Poult. Sci. 2010; 51: 311–318. https://doi.org/10.1080/00071668.2010.499424
25. KADHUM, FS. Isolation of some bacterial spp . in two different types of broiler litters. J vet med sci. 2010; 1: 146-152.
26. LOPES, M. et al.
Quicklime treatment and stirring of different poultry litter substrates for reducing pathogenic bacteria counts. Poult Sci . 2013; 92: 638–644. https://doi.org/10.3382/ps.2012-02700
27. NGODIGHA, E.M. and OWEN, O.J. Evaluation of the bacteriological characteristics of poultry litter as feedstuff for cattle. Sci res essays. 2009; 4: 188–190.
28. RELUN, A. et al. A large outbreak of bovine botulism possibly linked to a massive contamination of grass silage by type D/C Clostridium botulinum spores on a farm with dairy and poultry operations. Epidemiol. Infect. 2017; 145: 3477-3485
29. MUSHTAQ, M. et al. Effect of Salmonella on decomposition of poultry litter. J. Sci. Res. 2018; 10: 51-60.
30. FANDIÑO, L.C. and VERJAN-GARCÍA, N. A common Salmonella Enteritidis sequence type from poultry and human gastroenteritis in Ibagué, Colombia. Biomédica. 2019; 39: 50-62.
31. KHAN, S. and CAO, Q. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons. J soil sediment. 2012; 12: 178-184.
32. FANG, H. et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. ‎Environ. Sci. Technol. 2015; 49: 1095-1104.
33. Li, X. et al. Salmonella populations and prevalence in layer feces from commercial high-rise houses and characterization of the Salmonella isolates by serotyping, antibiotic resistance analysis, and pulsed field gel electrophoresis. Poult Sci. 2007; 86: 591–597. https://doi.org/10.1093/ps/86.3.591
34. ROJAS, M.J. and MASDEU, M.G.Y.V. Resultados del análisis microbiológico de yacijas de paja de arroz utilizadas en la avicultura. Rev. Cubana Cienc. Avic. 2002; 26: 121–123.
35. ALALI, W,Q. et al. Prevalence and Distribution of Salmonella in Organic and Conventional Broiler Poultry Farms. Foodborne pathog dis. 2010; 7: 1363–1371. https://doi.org/10.1089/fpd.2010.0566
36. IBRAHIM, M.A. et al. Seroepidemiological Studies on Poultry Salmonellosis and its Public Health Importance. J World’s Poult Res. 2013; 3: 18–23.
37. KASSEM, I.I. et al. Use of bioluminescence imaging to monitor Campylobacter survival in chicken litter. J. Appl. Microbiol. 2010; 109: 1988-1997.
38. ELLIS-IVERSEN, J. et al. Persistent environmental reservoirs on farms as risk factors for Campylobacter in commercial poultry. Epidemiol. Infect. 2012; 140: 916-924.
39. KASSEM, I.I. et al. Campylobacter in poultry: the conundrums of highly adaptable and ubiquitous foodborne pathogens. En Foodborne Diseases. eds J. M. Soon, L. Manning, and C. AWallace (Boca Raton, FL: CRC Press); 2016. p. 79–112.
40. AHMED, M.F.M, SCHULZ, J. and HARTUNG, J. Survival of Campylobacter jejuni in naturally and artificially contaminated laying hen feces. Poult Sci . 2013; 92: 364-369.
41. CHEN, Z. and JIANG, X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture. 2014; 4: 1–29. https://doi.org/10.3390/agriculture4010001
42. STEINER, T. Infect Dis Clin North Am. 2013; 27: 555-576.
43. ANDOH, L.A. et al. Prevalence and characterization of Salmonella among humans in Ghana. Trop Med Int Health. 2017; 45: 3.
44. NGAJILO, D. et al. . Risk factors associated with allergic sensitization and asthma phenotypes among poultry farm workers. Am J Ind Med . 2018; 61: 515-523.
45. SHEFFIELD, C.L, CRIPPEN, T.L. and BEIER, RC. Multi-microbial compounds eliminate or reduce Salmonella Typhimurium from one-third of poultry liter samples within 8 days. Res. J. Poult. Sci. 2018; 11: 5-8.
46. LI, K. et al. Impact of built-up-litter and commercial antimicrobials on Salmonella and Campylobacter contamination of broiler carcasses processed at a pilot Mobile Poultry-Processing Unit. Front. Vet. Sci. 2017; 4: 88.
47. SOLIMAN, E.S., SALLAM, N.H. and ABOUELHASSAN, E.M. Effectiveness of poultry litter amendments on bacterial survival and Eimeria oocyst sporulation. Vet World. 2018; 11: 1064-1073. Abstract.
48. STRÖM, G. et al. Manure management and public health: Sanitary and socio-economic aspects among urban livestock-keepers in Cambodia. Sci Total Environ. 2018; 621: 193-200.
49. DIMITROV, KM. et al. Newcastle disease viruses causing recent outbreaks worldwide show unexpectedly high genetic similarity to historical virulent isolates from the 1940s. ‎J Clin Microbiol. 2016; 54: 1228-1235.
50. ALAM, M.U. et al. Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. Int j hyg envir heal. 2019; 222: 1068-1076.
51. LI, H. et al. Assessment of frequent litter amendment application on ammonia emission from broilers operations. J Air Waste Manag Assoc. 2013; 63: 442-452.
52. BEZERRA, DE CARVALHO G. et al. Litter quality of broiler fed with to different levels of sulfur amino acid. J Anim. Behav. 2018; 6: 21–28. https://doi.org/10.14269/2318-1265/jabb.v6n1p21-28
53. CARTER, S.D. and KIM, H. Technologies to reduce environmental impact of animal wastes associated with feeding for maximum productivity. Animal Front. 2013; 3: 42–47. https://doi.org/10.2527/af.2013-0023
54. LIANG Y. et al. Ammonia emissions from US laying hen houses in Iowa and Pennsylvania. Trans ASAE . 2005; 48: 1927–1941.
55. PIZARRO, R., ICOCHEA, D., REYNA, S. and FALCÓN, P. Efecto del tratamiento de la cama con un aluminosilicato en pollos de carne. Rev. investig. vet. Perú.2009; 20: 213–220.
56. TUALEKA, A.R, FARADISHA, J. and MAHARJA, R. Determination of No-Observed-Adverse-Effect Level Ammonia in White Mice Through CD4 Expression. Dose-Response. 2018; 16: 1559325818807790.
57. NASEEM, S. and KING, A.J. Ammonia production in poultry houses can affect health of humans, birds, and the environment—techniques for its reduction during poultry production. Environ Sci Pollut Res . 2018; 25: 15269-15293.
58. RITZ, C.W., FAIRCHILD, B.D. and LACY, M.P. Litter Quality and Broiler Performance. Cooperative Extension Service/The University of Georgia College of Agricultural and Environmental Sciences. Bulletin 1267. 2009. Fecha de consulta: 20 de ostubre 2019. Disponible en: http://athenaeum.libs.uga.edu/handle/10724/12466.
59. COSTA, M.C. et al. Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS One. 2017; 12: 1–13. https://doi.org/10.1371/journal.pone.0171642
60. DIARRA, M.S. and MALOUIN, F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol. 2014; 5: 1–15. https://doi.org/10.3389/fmicb.2014.00282
61. DOREGIRAEE, F. et al. Changes in antimicrobial resistance patterns and dominance of extended spectrum β-lactamase genes among faecal Escherichia coli isolates from broilers and workers during two rearing periods. Ital j anim sci. 2018; 17: 815–824. https://doi.org/10.1080/1828051X.2017.1415703
62. MEHDI Y. et al. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018; 4: 170–178. https://doi.org/10.1016/j.aninu.2018.03.002
63. XIONG, W. et al. Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Ecotox environ safe. 2018; 147: 455–460. https://doi.org/10.1016/j.ecoenv.2017.08.061
64. CHATTOPADHYAY, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014; 5: 1–3. https://doi.org/10.3389/fmicb.2014.00334
65. GONZALEZ, R.M. and ANGELES H.J.C. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control. 2017; 72: 255–267. https://doi.org/10.1016/j.foodcont.2016.03.001
66. KHODAMBASHI EMAMI N. et al. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim feed sci tech. 2012; 175: 57–64. https://doi.org/10.1016/j.anifeedsci.2012.04.001
67. LEE K.W. et al . Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res vet sci. 2012; 93: 721–728. https://doi.org/10.1016/j.rvsc.2012.01.001
68. CRISOL-MARTÍNEZ, E. et al. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Appl Microbiol Biotechnol. 2017; 101: 4547–4559. https://doi.org/10.1007/s00253-017-8193-9
69. COOK, K.L, NETTHISINGHE, A.M.P. and GILFILLEN, R.A. Detection of Pathogens, Indicators, and Antibiotic Resistance Genes after Land Application of Poultry Litter. J. Environ Qual. 2014; 43: 1546. https://doi.org/10.2134/jeq2013.10.0432
70. NANDI, S. et al. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci . 2004; 101: 7118-7122.
71. ISLAM, M.J. et al. Isolation of plasmidmediated multidrug resistant Escherichia coli from poultry. Int. J. Sustain. Crop Prod. 2008; 3: 46-50.
72. ORGANIZACIÓN MUNDIAL DE LA SALUD. Resistencia antimicrobiana, reporte global en vigilancia. 2014. Fecha de consulta: 19 de octubre de 2019. Disponible en: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1
73. XIE, W., SHEN, Q. and ZHAO, F.J. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur j soil sci. 2018; 69: 181-195.
74. ZHANG, H. et al. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull . 2013; 73: 282-290.
75. EWALL, M. Air Pollution and Toxic Hazards Associated with Poultry Litter Incineration. Energy. 2007. Fecha de consulta: 19 de octubre de 2019. Disponible en: https://www.energyjustice.net/poultrylitter/toxics
76. CRUZ, CARRILLO A, MORENO FIGUEREDO G. and LARA OSORIO M. Dioxins toxicology and its impact in human health. Rev. Med. Vet. 2010; 19: 73-84.
77. PROGRAMA DE LAS NACIONES UNIDAS PARA EL MEDIO AMBIENTE. Instrumental normalizado para la identificación y cuantificación de liberaciones de dioxinas y furanos. (2 ed.). Ginebra, Suiza: IOMC, 2006
78. HAYES E.T, CURRAN T.P. and DODD V.A. Odour and ammonia emissions from intensive poultry units in Ireland. Bioresour. Technol. 2006; 97: 933-939.
79. OVIEDO-ROND, E.O. Tecnologias para mitigar o impacto ambiental da produção de frangos de corte. R. Bras. Zootec. 2008; 37: 239-252.
80. PEREIRA-PEÑATE, NORMA. Uso de microorganismos eficientes (M.E) en pollinaza para disminuir los niveles de amoniaco (NH3) en granjas avícolas comerciales de Sincelejo, Colombia. Rev Colombiana Cienc Anim. 2016; 8: 386–390. https://doi.org/10.24188/RECIA.V8.N0.2016.395
81. ROLL, V.F.B. et al. Condição microbiológica de cama tratada com Impact P® em matrizes de frangos de corte. Cienc. Rural. 2008; 38: 2650–2653. https://doi.org/10.1590/S0103-84782008005000006
82. VICENTE, J.L. et al. Effect of poultry guard litter amendment on horizontal transmission of Salmonella enteritidis in broiler chicks. Int. J. Poult. 2007; 6: 314–317.
83. KIM J. et al. Validating thermal inactivation of Salmonella spp. in fresh and aged chicken litter. Appl. Environ. Microbiol. 2012; 78: 1302–1307. https://doi.org/10.1128/AEM.06671-11
84. DA CRUZ, D.P. et al. Performance, carcass yield and litter quality of broilers raised on litters treated with micro-organisms. Cien Anime Brasil. 2013; 14: 41–48. https://doi.org/10.5216/cab.v14i1.17858
85. ROTHROCK, M.J. et al. The effect of alum addition on microbial communities in poultry litter. Poult Sci. 2008; 87: 1493–1503. https://doi.org/10.3382/ps.2007-00491
86. PRA, M.A.D. et al. Quicklime for controlling Salmonella spp. and Clostridium spp in litter from floor pens of broilers. Cienc. Rural. 2009; 39: 1189–1194. https://doi.org/10.1590/s0103-84782009005000028
87. IVANOV, I.E. Treatment of broiler litter with organic acids. Res Vet Sci . 2001; 70: 169–173. https://doi.org/10.1053/rvsc.2001.0454
88. ASARI, M. et al. Waste wood recycling as animal bedding and development of bio-monitoring tool using the CALUX assay. Environ Int. 2004; 30: 639–649. https://doi.org/10.1016/j.envint.2003.12.002
89. CHEN, Z. et al. Effects of chicken litter storage time and ammonia content on thermal resistance of desiccation-adapted Salmonella spp. Appl. Environ. Microbiol. 2015; 81: 6883–6889. https://doi.org/10.1128/AEM.01876-15
90. BERRY, E.D. et al. Fate of Naturally Occurring Escherichia coli O157:H7 and Other Zoonotic Pathogens during Minimally Managed Bovine Feedlot Manure Composting Processes. J Food Prot. 2013; 76: 1308–1321. https://doi.org/10.4315/0362-028X.JFP-12-364
91. PATERLINI, H., GONZÁLEZ, M.V and PICONE, L.I. Calidad de la cama de pollo fresca y compostada. Ciencia Del Suelo. 2017; 35: 69–78.
92. ERICKSON, M.C. et al. Thermal and Nonthermal Factors Affecting Survival of Salmonella and Listeria monocytogenes in Animal Manure–Based Compost Mixtures. J Food Prot. 2014; 77: 1512–1518. https://doi.org/10.4315/0362-028X.JFP-14-111
93. TASHO, R.P. and CHO J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci total environ. 2016; 563: 366-376.
94. SHEFFIELD CL. et al. Salmonella Typhimurium in chicken manure reduced or eliminated by addition of LT1000. J Appl Poult Res. 2014; 23: 116-120.
95. KAAKOUSH, N.O. et al. Global epidemiology of Campylobacter infection. Clin Microbiol Rev. 2015; 28: 687-720.
96. SIBANDA, N. et al. A review of the effect of management practices on Campylobacter prevalence in poultry farms. Frontiers in microbiology. 2018; 9.
97. CRAMER, J.P. Enterohemorrhagic Escherichia coli (EHEC): Hemorrhagic Colitis and Hemolytic Uremic Syndrome (HUS). En: Emerging Infectious Diseases Clinical Case Studies. (Northem Germany) 2014. p 213-227.
98. SHECHO, M. et al. Cloacael carriage and multidrug resistance Escherichia coli O157: H7 from poultry farms, eastern Ethiopia. Journal of veterinary medicine. 2017; 19.
99. SMITH, T.C. Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathog. 2015; 11: e1004564.
100. KOBAYASHI, S.D., MALACHOWA, N. and DELEO, F.R. Pathogenesis of
Staphylococcus aureus abscesses. Am J Pathol. 2015; 185: 1518-1527.
101. MARTIN, S. Clostridium botulinumtype D intoxication in a dairy herd in Ontario. Can Vet J . 2003; 44: 493.
102. PIGNATA-VIANA, M.C., SANTOS, J.S. and VIANA, P.T. Epidemiologia e fatores de riscos relacionados à intoxicação alimentar causada por Clostridium Botulinum: uma revisão narrativa. Clin. biomed. 2019; 39: 161-170.
103. WIOLAND, L. et al. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells. Toxicon. 2013; 75: 122-135.
104. LABBE, R.G. and JUNEJA, V.K. Clostridium perfringens. En Foodborne diseases. Tercera edición. United States: Elsevier Inc; 2017. p. 235-242.
105. DREVETS, D.A. and BRONZE, M.S. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 2008; 53: 151-165.
106. DAHSHAN, H., MERWAD, A.M. and MOHAMED, T.S. Listeria species in broiler poultry farms: Potential public health hazards. J Microbiol Biotechnol. 2016; 26: 1551-6.
107. RADOSHEVICH, L. and COSSART, P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2017; 16: 32.
108. VIEGAS, C. et al. Fungal contamination of poultry litter: a public health problem. ‎J. Toxicol. Environ. Health. 2012; 75: 22-23.
109. VIEGAS, S. et al. Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann Occup Hyg. 2015; 60: 176-183.
110. RAMÍREZ, HOBAK. et al. Onicomicosis por mohos no dermatofitos. Una revisión. Dermatología CMQ. 2017; 15: 184-195.
111. MARTÍNEZ-HERNÁNDEZ L., CARO-SÁNCHEZ, C.H. and BONIFAZ A. Infecciones por Fusarium. Dermatol Rev Mex . 2014; 58: 432-442.
112. GÓMEZ, L.F. et al. Detection of Histoplasma capsulatum in Organic Fertilizers by Hc100 Nested Polymerase Chain Reaction and Its Correlation with the Physicochemical and Microbiological Characteristics of the Samples. Am J Trop Med Hyg. 2018; 98: 1303-1312.
113. RIDDELL, J. and WHEAT, L.J. Central Nervous System Infection with Histoplasma capsulatum. J. Fungi . 2019; 5: 70.
114. RYAN, U., ZAHEDI, A. and PAPARINI, A. Cryptosporidium in humans and animals—a one health approach to prophylaxis. Parasite Immunol . 2016; 38: 535-547.
115. VERMEULEN, L.C. et al. Global Cryptosporidium loads from livestock manure. Environ. Sci. Technol. 2017; 51: 8663-8671.
116. KANDUN, I.N. et al. Chicken faeces garden fertilizer: possible source of human avian influenza H5N1 infection. Zoonoses Public Health. 2010; 57: 285-290.
117. CHAKRABARTI, S. et al. Detection and isolation of exotic Newcastle disease virus from field-collected flies. J. Med. Entomol. 2007; 44: 840-844.
118. GUAN, J. et al. Survival of avian influenza and Newcastle disease viruses in compost and at ambient temperatures based on virus isolation and real-time reverse transcriptase PCR. Avian Dis. 2009; 53: 26-33.
119. BROENNUM, T., ELMERDAHL, J. and BISGAARD, M. Persistence of Salmonella Senftenberg in poultry production environments and investigation of its resistance to desiccation. Avian Pathol . 2008; 37: 421-427.
120. DAVIES, R.H. and BRESLIN, M. Persistence of Salmonella Enteritidis Phage Type 4 in the environment and arthropod vectors on an empty free‐range chicken farm. Environ. Microbiol. 2003; 5: 79-84.
121. SMITH, S. et al. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter. Infect. Ecol. Epidemiol. 2016; 6: 31685.
122. CARMONA F. Presencia de Campylobacter jejuni en aves de corral y sus manipuladores. Biomédica. 1985; 5: 78-85.
123. BUITRAGO, J.D.R., SUÁREZ, M.C. and URIBE, C. Susceptibilidad antimicrobiana in vitro de cepas de Salmonella spp. en granjas de ponedoras comerciales del departamento de Antioquia. Rev colomb cienc pec. 2006; 19: 297-305.
124. PULIDO-LANDÍNEZ, M. et al. Presence of Salmonella Enteritidis and Salmonella Gallinarum in commercial laying hens diagnosed with fowl typhoid disease in Colombia. Avian Dis. 2014; 58: 165-170.
125. DONADO-GODOY, P. et al. Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. J Food Prot. 2012; 75: 874-883.
126. DONADO-GODOY, P. et al. Counts, serovars, and antimicrobial resistance phenotypes of Salmonella on raw chicken meat at retail in Colombia. J Food Prot. 2014; 77: 227-235.
127. RODRÍGUEZ R. et al. Characterization of Salmonella from commercial egg-laying hen farms in a central region of Colombia. Avian Dis. 2015; 59: 57-63.
128. RODRIGUEZ, J.M, RONDÓN, I.S. and VERJAN, N. Serotypes of Salmonella in Broiler Carcasses Marketed at Ibague, Colombia. Braz j poultry sci. 2015; 17: 545-552.
129. CASTRO-VARGAS, R. et al. Phenotypic and Genotypic Resistance of Salmonella Heidelberg Isolated From One of the Largest Poultry Production Region from Colombia. Poult Sci. 2019; 18: 610-617.
130. KUMAR, K. et al. Enzyme-linked immunosorbent assay for ultrace determination of antibiotics in aqueous samples. J. Environ. Qual. 2004; 33: 250-256.
Cómo citar
Ospina Barrero, M. A., Borsoi, A., Peñuela Sierra, L. M., & Varón López , M. (2021). Cama de aves de corral un factor importante en la seguridad alimentaria. Biotecnología En El Sector Agropecuario Y Agroindustrial, 19(2), 1-20. https://doi.org/10.18684/bsaa.v19.n2.2021.1451
Publicado
2021-03-01
Sección
Artículos de Revisiòn

Más sobre este tema