Importancia de la encapsulación de probióticos: gelificación iónica y coacervación compleja como técnicas prometedoras para uso alimentario
Resumen
La microflora intestinal cuenta con microorganismos vivos que promueven el bienestar y la salud del intestino y de manera indirecta de diferentes sistemas del cuerpo. Cuando se suministran microorganismos probióticos en dosis correcta y de manera adecuada, estos contribuyen a la disminución de adquirir ciertas enfermedades; los probióticos cuentan con numerosas propiedades que inciden sobre la microflora del organismo resultando beneficiosos principalmente en la salud intestinal y en el sistema inmunológico, que pueden ser suministrados por productos nutraceúticos o por alimentos funcionales. Sin embargo, existen limitaciones en su uso debido a que son sensibles bajo condiciones adversas del entorno, se degradan en matrices alimentarias en condiciones ácidas del tracto gastrointestinal, lugar donde deben ejercer su mecanismo de acción para generar los efectos benéficos en la salud del hospedero. Por lo tanto, es importante la implementación de estrategias que brinden protección a los probióticos frente a condiciones no favorables, para mantener significativamente la viabilidad durante el procesamiento y en el sistema digestivo. Existen diversas técnicas de encapsulación, entre ellas la gelificación iónica y la coacervación compleja, ambos métodos con grandes bondades para la protección de microorganismos probióticos y amplias ventajas para la aplicación en diferentes matrices alimentarias; estas técnicasse realizan con materiales no tóxicos, naturales y aprobados para el consumo humano. La presente revisión tiene por objetivo presentar aspectos importantes sobre los microorganismos probióticos en la industria de alimentos, en la salud, y la necesidad de las barreras de protección con enfoque principalmente en el método de gelificación iónica y coacervación compleja como técnicas emergentes de encapsulación.
Descargas
Disciplinas:
Encapsulación de probóticosLenguajes:
Español; CastellanoReferencias bibliográficas
ADILAH, RUSYDA-NUR; CHIU, SHIEH-TSUNG; HU, SHAO-YANG; BALLANTYNE, ROLISSA; HAPPY, NURSYAM; CHENG, ANN-CHANG; LIU, CHUN-HUNG. Improvement in the probiotic efficacy of Bacillus subtilis E20-stimulates growth and health status of white shrimp, Litopenaeus vannamei via encapsulation in alginate and coated with chitosan. Fish and Shellfish Immunology, v. 125, 2022, p. 74-83.https://doi.org/10.1016/j.fsi.2022.05.002
AFZAAL, MUHAMMAD; SAEED, FARHAN; AHMAD, AWAIS; TUFAIL, TABUSSAM; ATEEQ, HUDA; AHMED, AFTAB; ISMAIL, ZORIA; MUHAMMAD, FAQIR. Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Science and Nutrition, v. 8, n. 6, 2020, p. 2739-2747.https://doi.org/10.1002/fsn3.1562
ALKHATIB, HAMZEH; DOOLAANEA, ABD-ALMONEM; ASSADPOUR, ELHAM; MOHMAD-SABERE, AWIS-SUKARNI; MOHAMED, FARAHIDAH; JAFARI, SEID-MAHDI. Optimizing the encapsulation of black seed oil into alginate beads by ionic gelation. Journal of Food Engineering, v. 328, 2022, e111065. https://doi.org/10.1016/j.jfoodeng.2022.e111065
AZAM, MUHAMMAD; SAEED, MUHAMMAD; PASHA, IMRAN; SHAHID, MUHAMMAD. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. In Food Bioscience, v. 37, 2020, e100679.https://doi.org/10.1016/j.fbio.2020.100679
BANNIKOVA, ANNA; EVTEEV, ALEKSANDR; PANKIN, KIRILL; EVDOKIMOV, IVAN; KASAPIS, STEFAN. Microencapsulation of fish oil with alginate: In-vitro evaluation and controlled release. LWT - Food Science and Technology, v, 90, 2018, p. 310-315. https://doi.org/ 10.1016/j.fbp.2020.08.009
BARRAGÁN, LUIS; TOTOSAUS, ALFONSO; DE LOURDES, MARÍA. Probiotication of cooked sausages employing agroindustrial coproducts as prebiotic co-encapsulant in ionotropic alginate–pectin gels. International Journal of Food Science and Technology, v. 55, n. 3, 2020, p. 1088–1096. https://doi.org/ 10.1111/ijfs.14259
BELDARRAIN, TATIANA; VILLALONOS, RICARDO; LEIVA, JAVIER; SEVILLANO, EVA. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food and Bioproducts Processing, v, 124, 2020, p. 57-71. https://doi.org/10.1016/j.lwt.2017.12.045
BOSNEA, LOULOUDA; MOSCHAKIS, TOMAS; NIGAM, POONAM; BILIADERIS, COSTAS. Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, v. 77, 2017, p. 282-289.https://doi.org/10.1016/j.lwt.2016.11.056
BRITISH BROADCASTING CORPORATION (BBC). Probiotics in Food, Beverages, Dietary Supplements and Animal Feed, 2020.https://www.bccresearch.com/market-research/food-and-beverage/probiotics-market-ingredients-supplements-foods-report.html [consultado septiembre 04 de 2022].
BRITO DE SOUZA, VOLNEI; THOMAZINI, MARCELO; CHAVES, ISABELA-ELIAS; FERRO-FURTADO, ROSELAYNE; FAVARO-TRINDADE, CARMEN-SÍLVIA. Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocolloids, v. 98, 2020, e105244. https://doi.org/10.1016/j.foodhyd.2019.105244
BURGAIN, JENNIFER; GAIANI, CLAIRE; LINDER, MICHEL; SCHER, JOEL. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, 2011, p. 467-483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
CARPENTIER, JÉRÉMY; CONFORTO, EGLE; CHAIGNEAU, CARINE; VENDEVILLE, JEAN-EUDES; MAUGARD, THIERRY. Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. Innovative Food Science and Emerging Technologies, v. 69, 2021, e102641.https://doi.org/10.1016/j.ifset.2021.102641
COLAK, NESRIN; TORUN, HÜLYA; GRUZ, JIRI; STRNAD, MIROSLAV; HERMOSÍN-GUTIÉRREZ, ISIDRO; HAYIRLIOGLU-AYAZ, SEMA; AYAZ, FAIK-AHMET. Bog bilberry phenolics, antioxidant capacity and nutrient profile. In Food Chemistry, v. 201, 2016, p. 339-349. https://doi.org/10.1016/j.foodchem.2016.01.062
COMUNIAN, TALITA; ARTWIN-ARCHUT, LAURA; GOMEZ- MASCARAQUE, ANDRÉ-BRODKORB; DRUSCH- STEPHAN. The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Journal of Marine Systems, 2020, e103608.https://doi.org/10.1016/j.carbpol.2022.119851
COOK, MICHAEL; TZORTZIS, GEORGE; CHARALAMPOPOULOS, DIMITRIS; KHUTORYANSKIY, VITALIY. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162, n. 1, 2012, p. 56-67.https://doi.org/10.1016/j.jconrel.2012.06.003
CUNNINGHAM, MARLA; AZCARATE-PERIL, M. ANDREA; BARNARD, ALAN; BENOIT, VALERIE; GRIMALDI, ROBERTA; GUYONNET, DENIS; HOLSCHER, HANNAH; HUNTER, KIRSTY; MANURUNG, SARMAULI; OBIS, DAVID; PETROVA, MARIYA; STEINERT, ROBERT; SWANSON, KELLY; VAN SINDEREN, DOUWE; VULEVIC, JELENA; GIBSON, GLENN. Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, v. 29, n. 8, 2021, p. 667-685. https://doi.org/10.1016/j.tim.2021.01.003
FARAHMAND, ATEFEH; GHORANI, BEHROUZ; EMADZADEH, BAHAREH. Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure. Food Research International, vol. 160, 2022, e111699.https://doi.org/10.1016/j.foodres.2022.111699
FERNANDO, ILEKUTTIGE-PRIYAN-SHANURA; LEE, WON-WOO; HAN, EUI-JEONG; AHN, GINNAE. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, v. 391, 2020, e123823.https://doi.org/10.1016/j.cej.2019.123823
FIOCCO, DANIELA; LONGO, ANGELA; ARENA, MATTIA-PIA; RUSSO, PASQUALE; SPANO, GIUSEPPE; CAPOZZI, VITTORIO. How probiotics face food stress: They get by with a little help. Critical Reviews in Food Science and Nutrition, vol, 60, n. 9, 2020, p. 1552-1580.https://doi.org/10.1080/10408398.2019.1580673
GHARANJIG, HAMID; GHARANJIG, KAMALADIN; HOSSEINNEZHAD, MOZHGAN; JAFARI, SEID MAHDI. Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, v. 148, 2020, p. 31-40.https://doi.org/10.1016/j.ijbiomac.2020.01.115
GOMEZ-ESTACA, JOAQUÍN; COMUNIANO, TALITA-ANINE; MONTERO, PILAR; FERRO-FURTADO, ROSELAYNE; FAVARO-TRINDADE, CARMEN-SÍLVIA. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloids, v. 61, 2016, p. 155-162.https://doi.org/10.1016/j.foodhyd.2016.05.005
GUINÉ, RAQUEL; FLORENÇA, SOFIA; BARROCA, MARIA-JOÃO; ANJOS, OFÉLIA. The duality of innovation and food development versus purely traditional foods. Trends in Food Science and Technology, v. 109, 2021, p. 16-24. https://doi.org/10.1016/j.tifs.2021.01.010
GUO, QI; LI, SHIDONG; TANG, JIAXIN; CHANG, SHUAIDAN; QIANG, LIYUE; DU, GENGAN; YUE, TIANLI; YUAN, YAHONG. Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. International Journal of Biological Macromolecules, v. 194, 2022, p. 539-545.https://doi.org/10.1016/j.ijbiomac.2021.11.096
HARPENI, ESTI; FIRANTI; GHANI, ABDEL; WARDIYANTO, WARDIYANTO. Effects of encapsulated Bacillus sp. D2.2 on gut bacterial composition and immune system in brown-marbled grouper Epinephelus fuscoguttatus. IOP Conference Series: Earth and Environmental Science, vol, 919, n. 1, 2021. https://doi.org/10.1088/1755-1315/919/1/012061
HOLKEM, AUGUSTO; RADDATZ, GREICE; BARIN, JULIANO; MORAES, ERICO; MULLER, EDSON; CODEVILLA, CRISTIANE; LOPES, EDUARDO; FERREIRA, CARLOS; DE MENEZES, CRISTIANO. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. Food Science and Technology, v. 76, 2016, p. 216-221.https://doi.org/10.1016/j.ijbiomac.2021.11.096
HU, LIANDONG; GAO, NA; LI, JIANLI; SUN, YONGBING; YANG, XIAONING. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, vol, 161, 2015, p. 87-93.https://doi.org/10.1016/j.jfoodeng.2015.03.027
JAIN, ASHAY; THAKUR, DEEPIKA; GHOSHAL, GARGI; KATARE, OM-PRAKASH; SHIVHARE, UMASHANKER. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, v. 87, 2016, p. 101–113. https://doi.org/10.1016/j.ijbiomac.2016.01.117
JIANG, HUIYONG; YAN, REN; WANG, KAICEN; WANG, QIANGQIANG; CHEN, XIAOXIAO; CHEN, LIFENG; LI, LANJUAN; LV, LONGXIAN. Lactobacillus reuteri DSM 17938 alleviates D-galactosamine-induced liver failure in rats. Biomedicine and Pharmacotherapy, v, 133, 2021, e111000. https://doi.org/10.1016/j.biopha.2020.111000
JIANG, ZHAOWEI; LI, MOTING; MCCLEMENTS, DAVID-JULIAN; LIU, XUEBO; LIU, FUGUO. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, v. 125, 2022, e107438.https://doi.org/10.1016/j.foodhyd.2021.107438
JRIDI, MOURAD; ABDELHEDI, OLA; SALEM, ALI; KECHAOU, HELA; NASRI, MONCEF; MENCHARI, YOSRA. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, v. 103, 2020, e105688. https://doi.org/10.1016/j.foodhyd.2020.105688
KIM, JIHYUN; HLAING, SHWE-PHYU; LEE, JUHO; SAPARBAYEVA, ARUZHAN; KIM, SANGSIK; HWANG, DONG-SOO; LEE, EUN-HEE; YOON, IN-SOO; YUN, HWAYOUNG; KIM, MIN-SOO; MOON, HYUNG-RYONG; JUNG, YUNJIN; YOO, JIN-WOOK. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydrate Polymers, v. 272, 2021, e118462. https://doi.org/10.1016/j.carbpol.2021.118462
KRUNIĆ, TANJA; OBRADOVIĆ, NATAŠA; RAKIN, MARICA. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chemistry, v. 293, 2019, p. 74-82. https://doi.org/10.1016/j.foodchem.2019.04.062
LIAO, YANG; HU, YU; FU, NAN; HU, JUWU; XIONG, HUA; CHEN, XIAO-DONG; ZHAO, QIANG. Maillard conjugates of whey protein isolate-xylooligosaccharides for the microencapsulation of: Lactobacillus rhamnosus: Protective effects and stability during spray drying, storage and gastrointestinal digestion. Food and Function, v. 12, n. 9, 2021, p. 4034-4045. https://doi.org/10.1039/d0fo03439h
LIU, ZHIJING; LIU, FEI; WANG, WAN; SUN, CHANGBAO; GAO, DA; MA, JIAGE; HUSSAIN, MUHAMMAD- ALTAF; XU, CONG; JIANG, ZHANMEI; HOU, JUNCAI. Study of the alleviation effects of a combination of: Lactobacillus rhamnosus and inulin on mice with colitis. Food and Function, v. 11, n. 5, 2020, p. 3823-3837.https://doi.org/10.1039/c9fo02992c
LOYEAU, PAULA; SPOTTI, MARIA; VINDEROLA, GABRIEL; CARRARA, CARLOS. Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides Maillard conjugates as emulsifiers. Food Science and Technology, v. 150, 2021, e111980. https://doi.org/10.1016/j.lwt.2021.111980
MAHDI, AMER-ALI; MOHAMMED, JALALELDEEN-KHALEEL; AL-ANSI, WALEED; GHALEB, ABDULJALIL; AL-MAQTARI, QAIS-ALI; MA, MENGJIAO; AHMED, MOHAMED-ISMAEL; WANG, HONGXIN. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, v. 152, 2020, p. 1125-1134.https://doi.org/10.1016/j.ijbiomac.2019.10.201
MAHMOUD, MONA; ABDALLAH, NAGWA; EL-SHAFEI, KAWTHER; TAWFIK, NABIL; EL-SAYED, HODA. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, v. 6, n. 3, 2020, e03541. https://doi.org/10.1016/j.heliyon.2020.e03541
MANOJLOVIĆ, VERICA; NEDOVI, VIKTOR; KAILASAPATHY, KASIPATHY; ZUIDAM, NICOLAAS-JAN. Encapsulación de probióticos para su uso en productos alimenticios. En Tecnologías de encapsulación para ingredientes alimentarios activos y procesamiento de alimentos, Springer, Nueva York, 2010, 269p.https://doi.org/10.1007/978-1-4419-1008-0_10
MARLUCI-PALAZZOLLI, SILVA; MARTELLI-TOSI, MILENA; MASSARIOLI, ADNA-PRADO; MELO, PRISCILLA-SIQUEIRA; ALENCAR, SEVERINO-MATIAS; FAVARO-TRINDADE, CARMEN. Co-encapsulation of guaraná extracts and probiotics increases probiotic survivability and simultaneously delivers bioactive compounds in simulated gastrointestinal fluids, Food Science and Technology, v. 161, 2022, e113351.https://doi.org/10.1016/j.lwt.2022.113351
MARQUES-DA SILVA, THAIANE; SONZA-PINTO, VANDRÉ; RAMIRES-FONSECA-SOARES, VÍTOR; MAROTZ, DÉBORA; CICHOSKI, ALEXANDRE-JOSÉ; QUEIROZ-ZEPKA, LEILA; JACOB-LOPES, EDUARDO; DE BONA-DA SILVA, CRISTIANE; DE MENEZES, CRISTIANO-RAGAGNIN. Viability of microencapsulated Lactobacillus acidophilus by complex coacervation associated with enzymatic crosslinking under application in different fruit juices. Food Research International, v. 141, 2021, e 110190.https://doi.org/10.1016/j.foodres.2021.110190
MIN, MIN; BUNT, CRAIG; MASON, SUSAN; HUSSAIN, MALIK. Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, v. 59, n. 16, 2019, p. 2626-2641.https://doi.org/10.1080/10408398.2018.1462760
MIRANDA-LINARES; QUINTANAR-GUERRERO; DEL REAL, ALICIA; ZAMBRANO-ZARAGOZA, MARÍA. Spray-drying method for the encapsulation of a functionalized ingredient in alginate-pectin nano- and microparticles loaded with distinct natural actives: Stability and antioxidant effect. Food Hydrocolloids, v. 101, 2020, e105560.https://doi.org/10.1016/j.foodhyd.2019.105560
MORDOR INTELLIGENCE. Mercado de probióticos: crecimiento, tendencias, impacto de covid-19 y pronósticos (2022 - 2027), 2021. https://www.mordorintelligence.com/industry-reports/probiotics-market [consultado agosto 25 de 2022].
MUHOZA, BERTRAND; QI, BAOKUN; HARINDINTWALI, JEAN-DAMASCENE; FARAG-KOKO, MARWA-YAGOUB; ZHANG, SHUANG; LI, YANG. Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocolloids, v. 124, 2022, e107239.https://doi.org/10.1016/j.foodhyd.2021.107239
MUHOZA, BERTRAND; XIA, SHUQIN; WANG, XUEJIAO; ZHANG, XIAOMING; LI, YANG; ZHANG, SHUANG. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Critical Reviews in Food Science and Nutrition, v. 62, n. 5, 2020, p. 1363-382.https://doi.org/10.1080/10408398.2020.1843132
NI, XIAOTIAN; TAN, ZHAOLI; DING, CHEN; ZHANG, CHUNCHAO; SONG, LAN; YANG, SHUAI; LIU, MINGWEI; JIA, RU; ZHAO, CHUANHUA; SONG, LEI; LIU, WANLIN; ZHOU, QUAN; GONG, TONGQING; LI, XIANJU; TAI, YANHONG; ZHU, WEIMIN; SHI, TIELIU; WANG, YI; XU, JIANMING; ZHEN, BEI; QIN, JUN. A region-resolved mucosa proteome of the human stomach. Nature Communications, v. 10, n. 1, 2019, p. 1-11.https://doi.org/10.1038/s41467-018-07960-x
OBRADOVIĆ, NATAŠA; VOLIĆ, MINA; NEDOVIĆ, VIKTOR; RAKIN, MARICA; BUGARSKI, BRANKO. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering, v. 321, 2022, e110948.https://doi.org/10.1016/j.jfoodeng.2022.110948
ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN Y LA ORGANIZACIÓN MUNDIAL DE LA SALUD (FAO y OMS). Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. In Estudios FAO alimentación y nutrición, v. 85, 2006.
ORTIZ-ROMERO, NALLELY; OCHOA-MARTINEZ, LUZ-ARACELI; GONZÁLEZ-HERRERA, SILVIA-MARINA; RUTIAGA-QUIÑONES, OLGA-MIRIAM; GALLEGOS-INFANTE, JOSÉ ALBERTO. Avances en las investigaciones sobre la encapsulación mediante gelación iónica: una revisión sistemática. TecnoLógicas, v. 24, n. 52, 2021, e1962.https://doi.org/10.22430/22565337.1962
PHILLIPS, CHARLES; WELCH, BRADLEY; GARRETT, MICHAEL; GRAYSON, BERNADETTE. Regional heterogeneity in rat Peyer’s patches through whole transcriptome analysis. Experimental Biology and Medicine, v. 246, n. 5, 2020, p. 513-522.https://doi.org/10.1177/1535370220973014
PILLAI, PRASANTH; MORALES-CONTRERAS, BLANCA; WICKER, LOUISE; NICKERSON, MICHAEL. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions. Food Chemistry, v. 305, 2020, e125433.https://doi.org/10.1016/j.foodchem.2019.125433
PIMENTEL, TATIANA-COLOMBO; COSTA, WHYARA-KAROLINE-ALMEIDA-DA; BARÃO, CARLOS-EDUARDO; ROSSET, MICHELE; MAGNANI, MARCIANE. Vegan probiotic products: A modern tendency or the newest challenge in functional foods. Food Research International, v. 140, 2021, e110033. https://doi.org/10.1016/j.foodres.2020.110033
PLAZA-DIAZ, JULIO; RUIZ-OJEDA, FRANCISCO-JAVIER; GIL-CAMPOS, MERCEDES; GIL, ANGEL. Mechanisms of Action of Probiotics. Advances in Nutrition, v. 10, 2019, p. 49-S66.https://doi.org/10.1093/advances/nmy063
RADDATZ, GREICE-CARINE; PINTO, VANDRÉ-SONZA; ZEPKA, LEILA-QUEIROZ; BARIN, SMANIOTO; CICHOSKI, ALEXANDRE-JOSÉ; BONA, CRISTIANE-DE. Use of red onion (Allium cepa L.) residue extract in the co-microencapsulation of probiotics added to a vegan product. Food Research International, 2022, e111854.https://doi.org/10.1016/j.foodres.2022.111854
REQUE, PRISCILLA-MAGRO; BRANDELLI, ADRIANO. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science and Technology, v, 114, 2021, p. 1-10. https://doi.org/10.1016/j.tifs.2021.05.022
RISCH, SARA. Encapsulación: descripción general de usos y técnicas. En: Risch, SJ y Reineccius, G., Eds., Encapsulation and Controlled Release of Food Ingredients, ACS Symposium Series, Publicaciones de la AEC, Washington DC, v. 590, 1995, 2-7 p.https://doi.org/10.1021/bk-1995-0590.ch001RODRÍGUEZ, YEIMY-ALEJANDRA; ROJAS, ANDRÉS-FELIPE. Encapsulación de probióticos para aplicaciones alimenticias. Biosalud, v. 15, 2016, p.106-115. https://doi.org/10.17151/biosa.2016.15.2.10
SAAD, NAIMA; DELATTRE, CÉDRIC; URDACI, MARÍA., SCHMITTER, JEAN-MARIE; BRESSOLLIER, PHILIPEE. An overview of the last advances in probiotic and prebiotic field. Food Science and Technology, v. 50, n. 1, 2013, p. 1-16.https://doi.org/10.1016/j.lwt.2012.05.014
SHARIFI, SOHRAB; REZAZAD-BARI, MAHMOUD; ALIZADEH, MOHAMMAD; ALMASI, HADI; AMIRI, SABER. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, v. 113, 2021, e106496.https://doi.org/10.1016/j.foodhyd.2020.106496
SHOJI, A; OLIVEIRA, A; BALIEIRO, J; FREITAS, O; THOMAZINI, M; HEINEMANN, R; OKURO, P; FAVARO-TRINDADE, C. Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food and Bioproducts Processing, v. 91, n. 2, 2013, p 83–88.https://doi.org/10.1016/j.fbp.2012.08.009
SING, CHARLES. Development of the modern theory of polymeric complex coacervation. Advances in Colloid and Interface Science, v. 239, 2017, p. 2-16.https://doi.org/10.1016/j.cis.2016.04.004
SPACOVA, IRINA; VAN-BEECK, WANNES; SEYS, SVEN; DEVOS, FIEN; VANOIRBEEK, JEROEN; VANDERLEYDEN, JOZEF; CEUPPENS, JAN; PETROVA, MARIYA; LEBEER, SARAH. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, v. 11, n. 6, 2020, p. 1729-1744. https://doi.org/10.1080/19490976.2020.1766345
SU, CHUN-RU; HUANG, YU-YAN; CHEN, QI-HUI; LI, MENG-FAN; WANG, HAO; LI, GUO-YAN; YUAN, YANG. A novel complex coacervate formed by gliadin and sodium alginate: Relationship to encapsulation and controlled release properties. Food Science and Technology, v. 139, 2021, e110591. https://doi.org/10.1016/j.lwt.2020.110591
STOLL, LIANA; COSTA, TANIA; JABLONSKI, ANDRÉ; FLÔRES, SIMONE; OLIVEIRA, ALESSANDRO. Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable. Food and Bioprocess Technology, v. 9, n. 1, 2016, p 172-181. https://doi.org/10.1007/s11947-015-1610-0
TAN, LI-LING; MAHOTRA, MANISH; CHAN, SI-YE; LOO, SAY-CHYE-JOACHIM. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydrate Polymers, v. 286, 2022, e119279.https://doi.org/10.1016/j.carbpol.2022.119279
THANH-UYEN, NGUYEN-THI; ABDUL-HAMID, ZURATUL-AIN; THI, LE-ANH; AHMAD, NURAZREENA-BINTI. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. Journal of Drug Delivery Science and Technology, v. 58, 2020, e101796. https://doi.org/10.1016/j.jddst.2020.101796
TIMILSENA, YAKINDRA-PRASAD; AKANBI, TAIWO; KHALID, NAUMAN; ADHIKARI, BENU; BARROW, COLIN. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, v. 121, 2019, p. 1276–1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144
VARGAS, SARA; DELGADO-MACUIL, RAÚL-JACOBO; RUIZ-ESPINOSA, HÉCTOR; ROJAS-LÓPEZ, MARLON; AMADOR-ESPEJO, GENARO-GUSTAVO. High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrasonics Sonochemistry, v. 70, 2021, e105340. https://doi.org/10.1016/j.ultsonch.2020.105340
VASILJEVIC, TODOR; SHAH, NAGENDRA. Probiotics-From Metchnikoff to bioactives. International Dairy Journal, v. 18, n. 7, 2008, p. 714-728.https://doi.org/10.1016/j.idairyj.2008.03.004
WANG, LI; ZHANG, BO-BO; YANG, XIAO-YU; SU, BAO-LIAN. Alginate@polydopamine@SiO2 microcapsules with controlled porosity for whole-cell based enantioselective biosynthesis of (S)−1-phenylethanol. Colloids and Surfaces B: Biointerfaces, v. 214, 2022, e112454.https://doi.org/10.1016/j.colsurfb.2022.112454
WEST, NICHOLAS; HUGHES, LILY; RAMSEY, REBECCA; ZHANG, PING; MARTONI, CHRISTOPHER; LEYER, GREGORY; CRIPPS, ALLAN; COX, AMANDA. Probiotics, Anticipation Stress, and the Acute Immune Response to Night Shift. Frontiers in Immunology, v. 11, 2021, p. 1-10. https://doi.org/10.3389/fimmu.2020.599547
XU, CONG; BAN, QINGFENG; WANG, WAN; HOU, JUNCAI; JIANG, ZHANMEI. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, v. 349, n. 600, 2022, p. 184-205.https://doi.org/10.1016/j.jconrel.2022.06.061
YAN, XUEFANG; JIN, JIAJIA; SU, XINHUAN; YIN, XIANLUN; GAO, JING; WANG, XIAOWEI; ZHANG, SHUCUI; BU, PEILI; WANG, MANSEN; ZHANG, YUN; WANG, ZHE; ZHANG, QUNYE. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circulation Research, 2020, p. 839-853. https://doi.org/10.1161/CIRCRESAHA.119.316394
YAO, MINGFEI; XIE, JIAOJIAO; DU, HENGJUN; MCCLEMENTS, DAVID-JULIAN; XIAO, HANG; LI, LANJUAN. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 2, 2020, p. 857-874.https://doi.org/10.1111/1541-4337.12532
YOHA, KANDASAMY-SUPPIRAMANIAM; NIDA, SUNDUS; DUTTA, SAYANTANI; MOSES, JA; ANANDHARAMAKRISHNAN. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. In Probiotics and Antimicrobial Proteins, v. 14, n. 1, 2022, p. 15-48. https://doi.org/10.1007/s12602-021-09791-7
YUAN, YONGKAI; YIN, MING; CHEN, LING; LIU, FEI; CHEN, MAOSHEN; ZHONG, FANG. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocolloids, v. 130, 2022, e107668.https://doi.org/10.1016/j.foodhyd.2022.107668
ZEASHAN, MUHAMMAD; AFZAAL, MUHAMMAD; SAEED, FARHAN; AHMED, AFTAB; TUFAIL, TABUSSAM; AHMED, AWAIS; MUHAMMAD, FAQIR ANJUM. Survival and behavior of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions. Food Science and Nutrition, v. 8, n. 5, 2020, p. 2419-2426.https://doi.org/ 10.1002/fsn3.1531
ZHAO, MENG; HUANG, XUE; ZHANG, HUI; ZHANG, YANZHEN; GÄNZLE, MICHAEL; YANG, NAN; NISHINARI, KATSUYOSHI; FANG, YAPENG. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocolloids, v. 105, 2020, e105790.https://doi.org/10.1016/j.foodhyd.2020.105790
ZHOU, BOLUN; YUAN, YUTONG; ZHANG, SHANSHAN; GUO, CAN; LI, XIAOLING; LI, GUIYUAN; XIONG, WEI; ZENG, ZHAOYANG. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Frontiers in Immunology, v. 11, 2020, p. 1-14. https://doi.org/10.3389/fimmu.2020.00575
Derechos de autor 2023 Universidad del Cauca

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.